• Clu+ HSCs represent myeloid/platelet-biased HSCs that expand with age, whereas Clu youthful HSCs become underrepresented with age.

  • Progressive changes in the balance between Clu+ and Clu HSC subsets account for HSC aging.

Abstract

Hematopoietic stem cells (HSCs) exhibit significant age-related phenotypic and functional alterations. Although single-cell technologies have elucidated age-related compositional changes, prospective identification of aging-associated HSC subsets has remained challenging. In this study, using clusterin (Clu)–green fluorescent protein (GFP) reporter mice, we demonstrated that Clu expression faithfully marks age-associated myeloid/platelet-biased HSCs throughout life. Clu-GFP expression clearly segregates a novel age-associated HSC subset that overlaps with but is distinct from those previously identified using antibodies against aging maker proteins or reporter systems of aged HSC signature genes. Clu-positive (Clu+) HSCs emerge as a minor population in the fetus and progressively expand with age. Clu+ HSCs display not only an increased propensity for myeloid/platelet-biased differentiation but also a unique behavior in the bone marrow, favoring self-renewal over differentiation into downstream progenitors. In contrast, Clu-negative (Clu) HSCs exhibit lineage-balanced differentiation, which predominates in the HSC pool during development but becomes underrepresented as aging progresses. Both subsets maintain long-term self-renewal capabilities even in aged mice but contribute differently to hematopoiesis. The predominant expansion of Clu+ HSCs largely drives the age-related changes observed in the HSC pool. Conversely, Clu HSCs preserve youthful functionality and molecular characteristics into old age. Consequently, progressive changes in the balance between Clu+ and Clu HSC subsets account for HSC aging. Our findings establish Clu as a novel marker for identifying aging-associated changes in HSCs and provide a new approach that enables lifelong tracking of the HSC aging process.

1.
de Haan
G
,
Lazare
SS
.
Aging of hematopoietic stem cells
.
Blood
.
2018
;
131
(
5
):
479
-
487
.
2.
Colom Díaz
PA
,
Mistry
JJ
,
Trowbridge
JJ
.
Hematopoietic stem cell aging and leukemia transformation
.
Blood
.
2023
;
142
(
6
):
533
-
542
.
3.
Mansell
E
,
Lin
DS
,
Loughran
SJ
,
Milsom
MD
,
Trowbridge
JJ
.
New insight into the causes, consequences, and correction of hematopoietic stem cell aging
.
Exp Hematol
.
2023
;
125-126
:
1
-
5
.
4.
Kasbekar
M
,
Mitchell
CA
,
Proven
MA
,
Passegué
E
.
Hematopoietic stem cells through the ages: a lifetime of adaptation to organismal demands
.
Cell Stem Cell
.
2023
;
30
(
11
):
1403
-
1420
.
5.
Fotopoulou
F
,
Rodriguez-Correa
E
,
Dussiau
C
,
Milsom
MD
.
Reconsidering the usual suspects in age-related hematologic disorders: is stem cell dysfunction a root cause of aging?
.
Exp Hematol
.
2025
;
143
:
104698
.
6.
Li
X
,
Wang
J
,
Hu
L
,
Cheng
T
.
How age affects human hematopoietic stem and progenitor cells and the strategies to mitigate aging
.
Exp Hematol
.
2025
;
143
:
104711
.
7.
Rossi
DJ
,
Bryder
D
,
Seita
J
,
Nussenzweig
A
,
Hoeijmakers
J
,
Weissman
IL
.
Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
.
Nature
.
2007
;
447
(
7145
):
725
-
729
.
8.
Mansell
E
,
Sigurdsson
V
,
Deltcheva
E
, et al
.
Mitochondrial potentiation ameliorates age-related heterogeneity in hematopoietic stem cell function
.
Cell Stem Cell
.
2021
;
28
(
2
):
241
-
256.e6
.
9.
Warr
MR
,
Binnewies
M
,
Flach
J
, et al
.
FOXO3A directs a protective autophagy program in haematopoietic stem cells
.
Nature
.
2013
;
494
(
7437
):
323
-
327
.
10.
Chua
BA
,
Lennan
CJ
,
Sunshine
MJ
, et al
.
Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis
.
Cell Stem Cell
.
2023
;
30
(
4
):
460
-
472.e6
.
11.
Sun
D
,
Luo
M
,
Jeong
M
, et al
.
Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal
.
Cell Stem Cell
.
2014
;
14
(
5
):
673
-
688
.
12.
Itokawa
N
,
Oshima
M
,
Koide
S
, et al
.
Epigenetic traits inscribed in chromatin accessibility in aged hematopoietic stem cells
.
Nat Commun
.
2022
;
13
(
1
):
2691
.
13.
Tharmapalan
V
,
Wagner
W
.
Biomarkers for aging of blood - how transferable are they between mice and humans?
.
Exp Hematol
.
2024
;
140
:
104600
.
14.
Kusumbe
AP
,
Ramasamy
SK
,
Itkin
T
, et al
.
Age-dependent modulation of vascular niches for haematopoietic stem cells
.
Nature
.
2016
;
532
(
7599
):
380
-
384
.
15.
Maryanovich
M
,
Zahalka
AH
,
Pierce
H
, et al
.
Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche
.
Nat Med
.
2018
;
24
(
6
):
782
-
791
.
16.
Kovtonyuk
LV
,
Caiado
F
,
Garcia-Martin
S
, et al
.
IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice
.
Blood
.
2022
;
139
(
1
):
44
-
58
.
17.
Mitchell
CA
,
Verovskaya
EV
,
Calero-Nieto
FJ
, et al
.
Stromal niche inflammation mediated by IL-1 signalling is a targetable driver of haematopoietic ageing
.
Nat Cell Biol
.
2023
;
25
(
1
):
30
-
41
.
18.
Johansson
A
,
Ho
NP
,
Takizawa
H
.
Microbiome and hemato-immune aging
.
Exp Hematol
.
2025
;
141
:
104685
.
19.
Ho
TT
,
Dellorusso
PV
,
Verovskaya
EV
, et al
.
Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions
.
J Exp Med
.
2021
;
218
(
7
):
e20210223
.
20.
Kuribayashi
W
,
Oshima
M
,
Itokawa
N
, et al
.
Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche
.
J Exp Med
.
2021
;
218
(
3
):
e20192283
.
21.
Girotra
M
,
Chiang
YH
,
Charmoy
M
, et al
.
Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems
.
Nat Aging
.
2023
;
3
(
9
):
1057
-
1066
.
22.
Sun
X
,
Cao
B
,
Naval-Sanchez
M
, et al
.
Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells
.
Nat Commun
.
2021
;
12
(
1
):
2665
.
23.
Young
K
,
Eudy
E
,
Bell
R
, et al
.
Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging
.
Cell Stem Cell
.
2021
;
28
(
8
):
1473
-
1482.e7
.
24.
Wendorff
AA
,
Aidan Quinn
S
,
Alvarez
S
, et al
.
Epigenetic reversal of hematopoietic stem cell aging in Phf6-knockout mice
.
Nat Aging
.
2022
;
2
(
11
):
1008
-
1023
.
25.
Dykstra
B
,
Olthof
S
,
Schreuder
J
,
Ritsema
M
,
de Haan
G
.
Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells
.
J Exp Med
.
2011
;
208
(
13
):
2691
-
2703
.
26.
Yamamoto
R
,
Wilkinson
AC
,
Ooehara
J
, et al
.
Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment
.
Cell Stem Cell
.
2018
;
22
(
4
):
600
-
607.e4
.
27.
Kowalczyk
MS
,
Tirosh
I
,
Heckl
D
, et al
.
Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells
.
Genome Res
.
2015
;
25
(
12
):
1860
-
1872
.
28.
Grover
A
,
Sanjuan-Pla
A
,
Thongjuea
S
, et al
.
Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells
.
Nat Commun
.
2016
;
7
:
11075
.
29.
Konturek-Ciesla
A
,
Dhapola
P
,
Zhang
Q
, et al
.
Temporal multimodal single-cell profiling of native hematopoiesis illuminates altered differentiation trajectories with age
.
Cell Rep
.
2023
;
42
(
4
):
112304
.
30.
Kataoka
K
,
Sato
T
,
Yoshimi
A
, et al
.
Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity
.
J Exp Med
.
2011
;
208
(
12
):
2403
-
2416
.
31.
Gazit
R
,
Mandal
PK
,
Ebina
W
, et al
.
Fgd5 identifies hematopoietic stem cells in the murine bone marrow
.
J Exp Med
.
2014
;
211
(
7
):
1315
-
1331
.
32.
Chen
JY
,
Miyanishi
M
,
Wang
SK
, et al
.
Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche
.
Nature
.
2016
;
530
(
7589
):
223
-
227
.
33.
Yokomizo
T
,
Watanabe
N
,
Umemoto
T
, et al
.
Hlf marks the developmental pathway for hematopoietic stem cells but not for erythro-myeloid progenitors
.
J Exp Med
.
2019
;
216
(
7
):
1599
-
1614
.
34.
Sanjuan-Pla
A
,
Macaulay
IC
,
Jensen
CT
, et al
.
Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
.
Nature
.
2013
;
502
(
7470
):
232
-
236
.
35.
Carrelha
J
,
Meng
Y
,
Kettyle
LM
, et al
.
Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells
.
Nature
.
2018
;
554
(
7690
):
106
-
111
.
36.
Gong
S
,
Zheng
C
,
Doughty
ML
, et al
.
A gene expression atlas of the central nervous system based on bacterial artificial chromosomes
.
Nature
.
2003
;
425
(
6961
):
917
-
925
.
37.
Sommerkamp
P
,
Romero-Mulero
MC
,
Narr
A
, et al
.
Mouse multipotent progenitor 5 cells are located at the interphase between hematopoietic stem and progenitor cells
.
Blood
.
2021
;
137
(
23
):
3218
-
3224
.
38.
Flohr Svendsen
A
,
Yang
D
,
Kim
K
, et al
.
A comprehensive transcriptome signature of murine hematopoietic stem cell aging
.
Blood
.
2021
;
138
(
6
):
439
-
451
.
39.
Satapathy
S
,
Wilson
MR
.
Identifying new molecular players in extracellular proteostasis
.
Biochem Soc Trans
.
2022
;
50
(
1
):
321
-
334
.
40.
Itakura
E
,
Chiba
M
,
Murata
T
,
Matsuura
A
.
Heparan sulfate is a clearance receptor for aberrant extracellular proteins
.
J Cell Biol
.
2020
;
219
(
3
):
e201911126
.
41.
Satapathy
S
,
Walker
H
,
Brown
J
,
Gambin
Y
,
Wilson
MR
.
The N-end rule pathway regulates ER stress-induced clusterin release to the cytosol where it directs misfolded proteins for degradation
.
Cell Rep
.
2023
;
42
(
9
):
113059
.
42.
Zhang
Y
,
Lv
X
,
Chen
L
,
Liu
Y
.
The role and function of CLU in cancer biology and therapy
.
Clin Exp Med
.
2023
;
23
(
5
):
1375
-
1391
.
43.
Martín-García
D
,
García-Aranda
M
,
Redondo
M
.
Therapeutic potential of clusterin inhibition in human cancer
.
Cells
.
2024
;
13
(
8
):
665
.
44.
Zhang
Y
,
Xie
X
,
Huang
Y
, et al
.
Temporal molecular program of human hematopoietic stem and progenitor cells after birth
.
Dev Cell
.
2022
;
57
(
24
):
2745
-
2760.e6
.
45.
Ayyaz
A
,
Kumar
S
,
Sangiorgi
B
, et al
.
Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell
.
Nature
.
2019
;
569
(
7754
):
121
-
125
.
46.
Beerman
I
,
Bhattacharya
D
,
Zandi
S
, et al
.
Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
12
):
5465
-
5470
.
47.
Gekas
C
,
Graf
T
.
CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age
.
Blood
.
2013
;
121
(
22
):
4463
-
4472
.
48.
Pietras
EM
,
Reynaud
D
,
Kang
YA
, et al
.
Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions
.
Cell Stem Cell
.
2015
;
17
(
1
):
35
-
46
.
49.
Wilkinson
AC
,
Ishida
R
,
Kikuchi
M
, et al
.
Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation
.
Nature
.
2019
;
571
(
7763
):
117
-
121
.
50.
Florian
MC
,
Klose
M
,
Sacma
M
, et al
.
Aging alters the epigenetic asymmetry of HSC division
.
PLoS Biol
.
2018
;
16
(
9
):
e2003389
.
51.
Poscablo
DM
,
Worthington
AK
,
Smith-Berdan
S
, et al
.
An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis
.
Cell
.
2024
;
187
(
12
):
3090
-
3107.e21
.
52.
Aksöz
M
,
Gafencu
GA
,
Stoilova
B
, et al
.
Hematopoietic stem cell heterogeneity and age-associated platelet bias are evolutionarily conserved
.
Sci Immunol
.
2024
;
9
(
98
):
eadk3469
.
53.
Li
JJ
,
Liu
J
,
Li
YE
, et al
.
Differentiation route determines the functional outputs of adult megakaryopoiesis
.
Immunity
.
2024
;
57
(
3
):
478
-
494.e6
.
54.
Morcos
MNF
,
Li
C
,
Munz
CM
, et al
.
Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis
.
Nat Commun
.
2022
;
13
(
1
):
4504
.
55.
La Manno
G
,
Soldatov
R
,
Zeisel
A
, et al
.
RNA velocity of single cells
.
Nature
.
2018
;
560
(
7719
):
494
-
498
.
56.
Montecino-Rodriguez
E
,
Kong
Y
,
Casero
D
,
Rouault
A
,
Dorshkind
K
,
Pioli
PD
.
Lymphoid-biased hematopoietic stem cells are maintained with age and efficiently generate lymphoid progeny
.
Stem Cell Rep
.
2019
;
12
(
3
):
584
-
596
.
57.
Gao
F
,
Elliott
NJ
,
Ho
J
,
Sharp
A
,
Shokhirev
MN
,
Hargreaves
DC
.
Heterozygous mutations in SMARCA2 reprogram the enhancer landscape by global retargeting of SMARCA4
.
Mol Cell
.
2019
;
75
(
5
):
891
-
904.e7
.
58.
Wolf
BK
,
Zhao
Y
,
McCray
A
, et al
.
Cooperation of chromatin remodeling SWI/SNF complex and pioneer factor AP-1 shapes 3D enhancer landscapes
.
Nat Struct Mol Biol
.
2023
;
30
(
1
):
10
-
21
.
59.
Bogeska
R
,
Mikecin
AM
,
Kaschutnig
P
, et al
.
Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging
.
Cell Stem Cell
.
2022
;
29
(
8
):
1273
-
1284.e8
.
60.
Beerman
I
,
Bock
C
,
Garrison
BS
, et al
.
Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging
.
Cell Stem Cell
.
2013
;
12
(
4
):
413
-
425
.
61.
López-Otín
C
,
Blasco
MA
,
Partridge
L
,
Serrano
M
,
Kroemer
G
.
Hallmarks of aging: an expanding universe
.
Cell
.
2023
;
186
(
2
):
243
-
278
.
62.
Kruta
M
,
Sunshine
MJ
,
Chua
BA
, et al
.
Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging
.
Cell Stem Cell
.
2021
;
28
(
11
):
1950
-
1965.e6
.
63.
Young
K
,
Borikar
S
,
Bell
R
,
Kuffler
L
,
Philip
V
,
Trowbridge
JJ
.
Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging
.
J Exp Med
.
2016
;
213
(
11
):
2259
-
2267
.
64.
Säwen
P
,
Eldeeb
M
,
Erlandsson
E
, et al
.
Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging
.
Elife
.
2018
;
7
:
e41258
.
65.
Yamashita
M
,
Iwama
A
.
Aging and clonal behavior of hematopoietic stem cells
.
Int J Mol Sci
.
2022
;
23
(
4
):
1948
.
66.
Bowling
S
,
Sritharan
D
,
Osorio
FG
, et al
.
An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells
.
Cell
.
2020
;
181
(
7
):
1693
-
1694
.
67.
Pei
W
,
Shang
F
,
Wang
X
, et al
.
Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by PolyloxExpress barcoding
.
Cell Stem Cell
.
2020
;
27
(
3
):
383
-
395.e8
.
You do not currently have access to this content.
Sign in via your Institution