• CD70 is an upregulated cell surface antigen and a promising therapeutic target in high-risk myeloma tumors.

  • Structure-optimized CD27-based CAR-Ts targeting CD70 outperform single-chain variable fragment–based CARs, leading to improved CAR-T expansion in vivo.

Abstract

Despite the success of B-cell maturation antigen (BCMA)–targeting chimeric antigen receptor (CAR) T cells (CAR-Ts) in multiple myeloma, patients with high-risk cytogenetic features continue to relapse most quickly and are in urgent need of additional therapeutic options. Here, we identify CD70, widely recognized as a favorable immunotherapy target in other cancers, as a specifically upregulated cell surface antigen in high-risk myeloma tumors. We use a structure-guided design to define a CD27-based anti-CD70 CAR-T design that outperforms all tested single-chain variable fragment–based CARs, leading to >80-fold improved CAR-T expansion in vivo. Epigenetic analysis via machine learning predicts key transcription factors and transcriptional networks driving CD70 upregulation in high-risk myeloma. Dual-targeting CAR-Ts against either CD70 or BCMA demonstrate a potential strategy to avoid antigen escape–mediated resistance. Together, these findings support the promise of targeting CD70 with optimized CAR-Ts in myeloma as well as future clinical translation of this approach.

1.
Holstein
SA
,
Grant
SJ
,
Wildes
TM
.
Chimeric antigen receptor T-cell and bispecific antibody therapy in multiple myeloma: moving into the future
.
J Clin Oncol
.
2023
;
41
(
27
):
4416
-
4429
.
2.
Firestone
RS
,
Mailankody
S
.
Current use of CAR T cells to treat multiple myeloma
.
Hematol Am Soc Hematol Educ Program 2023
.
2023
;
2023
(
1
):
340
-
347
.
3.
Hansen
DK
,
Sidana
S
,
Peres
LC
, et al
.
Idecabtagene vicleucel for relapsed/refractory multiple myeloma: real-world experience from the myeloma CAR T consortium
.
J Clin Oncol
.
2023
;
41
(
11
):
2087
-
2097
.
4.
Martin
T
,
Usmani
SZ
,
Berdeja
JG
, et al
.
Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up
.
J Clin Oncol
.
2023
;
41
(
6
):
1265
-
1274
.
5.
Van Oekelen
O
,
Nath
K
,
Mouhieddine
TH
, et al
.
Interventions and outcomes of patients with multiple myeloma receiving salvage therapy after BCMA-directed CAR T therapy
.
Blood
.
2023
;
141
(
7
):
756
-
765
.
6.
Cohen
AD
,
Garfall
AL
,
Stadtmauer
EA
, et al
.
B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma
.
J Clin Invest
.
2019
;
129
(
6
):
2210
-
2221
.
7.
Lee
H
,
Ahn
S
,
Maity
R
, et al
.
Mechanisms of antigen escape from BCMA- or GPRC5D-targeted immunotherapies in multiple myeloma
.
Nat Med
.
2023
;
29
(
9
):
2295
-
2306
.
8.
Smith
EL
,
Harrington
K
,
Staehr
M
, et al
.
GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells
.
Sci Transl Med
.
2019
;
11
(
485
):
eaau7746
.
9.
Mailankody
S
,
Devlin
SM
,
Landa
J
, et al
.
GPRC5D-targeted CAR T cells for myeloma
.
N Engl J Med
.
2022
;
387
(
13
):
1196
-
1206
.
10.
Mishra
AK
,
Gupta
A
,
Dagar
G
, et al
.
CAR-T-cell therapy in multiple myeloma: B-cell maturation antigen (BCMA) and beyond
.
Vaccines
.
2023
;
11
:
1721
.
11.
Uhlen
M
,
Karlsson
MJ
,
Zhong
W
, et al
.
A genome-wide transcriptomic analysis of protein-coding genes in human blood cells
.
Science
.
2019
;
366
(
6472
):
eaax9198
.
12.
Jacobs
J
,
Deschoolmeester
V
,
Zwaenepoel
K
, et al
.
CD70: an emerging target in cancer immunotherapy
.
Pharmacol Ther
.
2015
;
155
:
1
-
10
.
13.
Flieswasser
T
,
Camara-Clayette
V
,
Danu
A
, et al
.
Screening a broad range of solid and haematological tumour types for CD70 expression using a uniform IHC methodology as potential patient stratification method
.
Cancers (Basel)
.
2019
;
11
(
10
):
1611
.
14.
Flieswasser
T
,
Van den Eynde
A
,
Van Audenaerde
J
, et al
.
The CD70-CD27 axis in oncology: the new kids on the block
.
J Exp Clin Cancer Res
.
2022
;
41
(
1
):
12
.
15.
Hintzen
RQ
,
Lens
SM
,
Koopman
G
,
Pals
ST
,
Spits
H
,
van Lier
RA
.
CD70 represents the human ligand for CD27
.
Int Immunol
.
1994
;
6
(
3
):
477
-
480
.
16.
Riether
C
,
Pabst
T
,
Höpner
S
, et al
.
Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents
.
Nat Med
.
2020
;
26
(
9
):
1459
-
1467
.
17.
Perna
F
,
Berman
SH
,
Soni
RK
, et al
.
Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML
.
Cancer Cell
.
2017
;
32
(
4
):
506
-
519.e5
.
18.
McEarchern
JA
,
Smith
LM
,
McDonagh
CF
, et al
.
Preclinical characterization of SGN-70, a humanized antibody directed against CD70
.
Clin Cancer Res
.
2008
;
14
(
23
):
7763
-
7772
.
19.
Panowski
SH
,
Srinivasan
S
,
Tan
N
, et al
.
Preclinical development and evaluation of allogeneic CAR T cells targeting CD70 for the treatment of renal cell carcinoma
.
Cancer Res
.
2022
;
82
(
14
):
2610
-
2624
.
20.
Nilsson
MB
,
Yang
Y
,
Heeke
S
, et al
.
CD70 is a therapeutic target upregulated in EMT-associated EGFR tyrosine kinase inhibitor resistance
.
Cancer Cell
.
2023
;
41
(
2
):
340
-
355.e6
.
21.
Riether
C
,
Schürch
CM
,
Flury
C
, et al
.
Tyrosine kinase inhibitor-induced CD70 expression mediates drug resistance in leukemia stem cells by activating Wnt signaling
.
Sci Transl Med
.
2015
;
7
(
298
):
298ra119
.
22.
Leick
MB
,
Silva
H
,
Scarfò
I
, et al
.
Non-cleavable hinge enhances avidity and expansion of CAR-T cells for acute myeloid leukemia
.
Cancer Cell
.
2022
;
40
(
5
):
494
-
508.e5
.
23.
Sauer
T
,
Parikh
K
,
Sharma
S
, et al
.
CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity
.
Blood
.
2021
;
138
(
4
):
318
-
330
.
24.
Iyer
SP
,
Sica
RA
,
Ho
PJ
, et al
.
Safety and activity of CTX130, a CD70-targeted allogeneic CRISPR-Cas9-engineered CAR T-cell therapy, in patients with relapsed or refractory T-cell malignancies (COBALT-LYM): a single-arm, open-label, phase 1, dose-escalation study
.
Lancet Oncol
.
2025
;
26
(
1
):
110
-
122
.
25.
Pal
SK
,
Tran
B
,
Haanen
JBAG
, et al
.
CD70-targeted allogeneic CAR T-cell therapy for advanced clear cell renal cell carcinoma
.
Cancer Discov
.
2024
;
14
(
7
):
1176
-
1189
.
26.
Hudecek
M
,
Sommermeyer
D
,
Kosasih
PL
, et al
.
The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity
.
Cancer Immunol Res
.
2015
;
3
(
2
):
125
-
135
.
27.
Skerget
S
,
Penaherrera
D
,
Chari
A
, et al
.
Comprehensive molecular profiling of multiple myeloma identifies refined copy number and expression subtypes
.
Nat Genet
.
2024
;
56
(
9
):
1878
-
1889
.
28.
Ferguson
ID
,
Patiño-Escobar
B
,
Tuomivaara
ST
, et al
.
The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance
.
Nat Commun
.
2022
;
13
(
1
):
4121
.
29.
Anderson
GSF
,
Ballester-Beltran
J
,
Giotopoulos
G
, et al
.
Unbiased cell surface proteomics identifies SEMA4A as an effective immunotherapy target for myeloma
.
Blood
.
2022
;
139
(
16
):
2471
-
2482
.
30.
Palumbo
A
,
Avet-Loiseau
H
,
Oliva
S
, et al
.
Revised International Staging System for multiple myeloma: a report from International Myeloma Working Group
.
J Clin Oncol
.
2015
;
33
(
26
):
2863
-
2869
.
31.
Schavgoulidze
A
,
Talbot
A
,
Perrot
A
, et al
.
Biallelic deletion of 1p32 defines ultra-high-risk myeloma, but monoallelic del(1p32) remains a strong prognostic factor
.
Blood
.
2023
;
141
(
11
):
1308
-
1315
.
32.
Zhan
F
,
Huang
Y
,
Colla
S
, et al
.
The molecular classification of multiple myeloma
.
Blood
.
2006
;
108
(
6
):
2020
-
2028
.
33.
Shaffer
DR
,
Savoldo
B
,
Yi
Z
, et al
.
T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies
.
Blood
.
2011
;
117
(
16
):
4304
-
4314
.
34.
Wang
X
,
Mazurkiewicz
M
,
Hillert
EK
, et al
.
The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells [published correction appears in Sci Rep. 2016:6:30667]
.
Sci Rep
.
2016
;
6
:
26979
.
35.
Nix
MA
,
Wiita
AP
.
Alternative target recognition elements for chimeric antigen receptor (CAR) T cells: beyond standard antibody fragments
.
Cytotherapy
.
2024
;
26
(
7
):
729
-
738
.
36.
Wang
QJ
,
Yu
Z
,
Hanada
KI
, et al
.
Preclinical evaluation of chimeric antigen receptors targeting CD70-expressing cancers
.
Clin Cancer Res
.
2017
;
23
(
9
):
2267
-
2276
.
37.
Liu
W
,
Maben
Z
,
Wang
C
, et al
.
Structural delineation and phase-dependent activation of the costimulatory CD27:CD70 complex
.
J Biol Chem
.
2021
;
297
(
4
):
101102
.
38.
Cheng
J
,
Zhao
Y
,
Hu
H
, et al
.
Revealing the impact of CD70 expression on the manufacture and functions of CAR-70 T-cells based on single-cell transcriptomics
.
Cancer Immunol Immunother
.
2023
;
72
(
10
):
3163
-
3174
.
39.
Leman
JK
,
Weitzner
BD
,
Lewis
SM
, et al
.
Macromolecular modeling and design in Rosetta: recent methods and frameworks
.
Nat Methods
.
2020
;
17
(
7
):
665
-
680
.
40.
Maus
MV
,
Leick
MB
;
inventors; The General Hospital Corporation, assignee
.
CD70 targeted chimeric antigen receptor (CAR) T cells and uses thereof
.
US patent 2020US20220411478A1
.
September 15, 2022
.
41.
Fraietta
JA
,
Lacey
SF
,
Orlando
EJ
, et al
.
Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia [published correction appears in Nat Med. 2021;27(3):561]
.
Nat Med
.
2018
;
24
(
5
):
563
-
571
.
42.
Porter
DL
,
Hwang
WT
,
Frey
NV
, et al
.
Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia
.
Sci Transl Med
.
2015
;
7
(
303
):
303ra139
.
43.
Carnevale
J
,
Shifrut
E
,
Kale
N
, et al
.
RASA2 ablation in T cells boosts antigen sensitivity and long-term function
.
Nature
.
2022
;
609
(
7925
):
174
-
182
.
44.
Popovic
R
,
Martinez-Garcia
E
,
Giannopoulou
EG
, et al
.
Histone methyltransferase MMSET/NSD2 alters EZH2 binding and reprograms the myeloma epigenome through global and focal changes in H3K36 and H3K27 methylation
.
PLoS Genet
.
2014
;
10
(
9
):
e1004566
.
45.
Choudhry
P
,
Kasap
C
,
Patiño-Escobar
B
, et al
.
Functional multi-omics reveals genetic and pharmacologic regulation of surface CD38 in multiple myeloma
.
Blood Neoplasia
.
2024
;
1
(
3
):
100025
.
46.
Jin
Y
,
Chen
K
,
De Paepe
A
, et al
.
Active enhancer and chromatin accessibility landscapes chart the regulatory network of primary multiple myeloma
.
Blood
.
2018
;
131
(
19
):
2138
-
2150
.
47.
Cobaleda
C
,
Schebesta
A
,
Delogu
A
,
Busslinger
M
.
Pax5: the guardian of B cell identity and function
.
Nat Immunol
.
2007
;
8
(
5
):
463
-
470
.
48.
Gupta
VA
,
Barwick
BG
,
Matulis
SM
, et al
.
Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression
.
Blood
.
2021
;
137
(
26
):
3604
-
3615
.
49.
Ghorashian
S
,
Lucchini
G
,
Richardson
R
, et al
.
CD19/CD22 targeting with cotransduced CAR T cells to prevent antigen-negative relapse after CAR T-cell therapy for B-cell ALL
.
Blood
.
2024
;
143
(
2
):
118
-
123
.
50.
Fernández de Larrea
C
,
Staehr
M
,
Lopez
AV
, et al
.
Defining an optimal dual-targeted CAR T-cell therapy approach simultaneously targeting BCMA and GPRC5D to prevent BCMA escape-driven relapse in multiple myeloma
.
Blood Cancer Discov
.
2020
;
1
(
2
):
146
-
154
.
51.
Landgren
O
,
Kazandjian
D
.
Modern myeloma therapy + sustained minimal residual disease-negative = (functional) cure
.
J Clin Oncol
.
2022
;
40
(
25
):
2863
-
2866
.
52.
Wang
Y
,
Li
C
,
Xia
J
, et al
.
Humoral immune reconstitution after anti-BCMA CAR T-cell therapy in relapsed/refractory multiple myeloma
.
Blood Adv
.
2021
;
5
(
23
):
5290
-
5299
.
You do not currently have access to this content.
Sign in via your Institution