• Antigen-negative escape is a key driver of relapse after GPRC5D CAR T-cell therapy in MM.

  • Homozygous deletion and hypermethylation of GPRC5D are important mechanisms of target antigen loss.

Abstract

G protein-coupled receptor, class C, group 5, member D (GPRC5D) has emerged as a novel target for chimeric antigen receptor (CAR) T-cell therapy, demonstrating promising efficacy in multiple myeloma (MM). However, disease relapse is still common, and the mechanism of resistance remains poorly understood. In this study, we conducted whole-genome sequencing and whole-genome bisulfite sequencing on MM samples from 10 patients who relapsed after GPRC5D CAR T-cell therapy. Among these patients, 8 had GPRC5D loss, whereas 2 presented mixed expression (GPRC5D+/−). Genetic alterations were identified in 3 cases: one had a homozygous deletion in the GPRC5D gene, another had a biallelic loss in the regulatory regions of GPRC5D, and the third had homozygous deletions in both TNFRSF17 and GPRC5D after sequential anti–B-cell maturation antigen and anti-GPRC5D CAR T-cell therapies. No genetic changes were detected at GPRC5D locus in the remaining 7 cases. However, multiple hypermethylation sites were present in the transcriptional regulatory elements of the GPRC5D gene in 5 post-treatment MM samples. In MM cell lines, GPRC5D expression was inversely correlated with methylation levels in its regulatory regions. Furthermore, azacitidine treatment induced GPRC5D messenger RNA and protein expression in hypermethylated MM cell lines. Our findings highlight that biallelic genetic inactivation and hypermethylation-driven epigenetic silencing are key mechanisms contributing to GPRC5D loss and treatment resistance.

1.
Mikkilineni
L
,
Kochenderfer
JN
.
CAR T cell therapies for patients with multiple myeloma
.
Nat Rev Clin Oncol
.
2021
;
18
(
2
):
71
-
84
.
2.
Shah
N
,
Chari
A
,
Scott
E
,
Mezzi
K
,
Usmani
SZ
.
B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches
.
Leukemia
.
2020
;
34
(
4
):
985
-
1005
.
3.
Nath
K
,
Costa
BA
,
Mailankody
S
.
GPRC5D as a novel immunotherapeutic target in multiple myeloma
.
Nat Rev Clin Oncol
.
2023
;
20
(
5
):
281
-
282
.
4.
Lee
H
,
Neri
P
,
Bahlis
NJ
.
BCMA- or GPRC5D-targeting bispecific antibodies in multiple myeloma: efficacy, safety, and resistance mechanisms
.
Blood
.
2024
;
143
(
13
):
1211
-
1217
.
5.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
, et al
.
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study
.
Lancet
.
2021
;
398
(
10297
):
314
-
324
.
6.
Raje
N
,
Berdeja
J
,
Lin
Y
, et al
.
Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2019
;
380
(
18
):
1726
-
1737
.
7.
Munshi
NC
,
Anderson
LD
,
Shah
N
, et al
.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
-
716
.
8.
Mailankody
S
,
Devlin
SM
,
Landa
J
, et al
.
GPRC5D-targeted CAR T cells for myeloma
.
N Engl J Med
.
2022
;
387
(
13
):
1196
-
1206
.
9.
Zhang
M
,
Wei
G
,
Zhou
L
, et al
.
GPRC5D CAR T cells (OriCAR-017) in patients with relapsed or refractory multiple myeloma (POLARIS): a first-in-human, single-centre, single-arm, phase 1 trial
.
Lancet Haematol
.
2023
;
10
(
2
):
e107
-
e116
.
10.
Bal
S
,
Htut
M
,
Nadeem
O
, et al
.
BMS-986393 (CC-95266), a G protein-coupled receptor class C group 5 member D (GPRC5D)-targeted chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory multiple myeloma (RRMM): updated results from a phase 1 study [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
219
.
11.
Xia
J
,
Li
H
,
Yan
Z
, et al
.
Anti-G protein-coupled receptor, class C group 5 member D chimeric antigen receptor T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase Ⅱ trial
.
J Clin Oncol
.
2023
;
41
(
14
):
2583
-
2593
.
12.
Da Vià
MC
,
Dietrich
O
,
Truger
M
, et al
.
Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma
.
Nat Med
.
2021
;
27
(
4
):
616
-
619
.
13.
Samur
MK
,
Fulciniti
M
,
Aktas Samur
A
, et al
.
Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma
.
Nat Commun
.
2021
;
12
(
1
):
868
.
14.
Lee
H
,
Ahn
S
,
Maity
R
, et al
.
Mechanisms of antigen escape from BCMA- or GPRC5D-targeted immunotherapies in multiple myeloma
.
Nat Med
.
2023
;
29
(
9
):
2295
-
2306
.
15.
Firestone
RS
,
Socci
ND
,
Shekarkhand
T
, et al
.
Antigen escape as a shared mechanism of resistance to BCMA-directed therapies in multiple myeloma
.
Blood
.
2024
;
144
(
4
):
402
-
407
.
16.
Derrien
J
,
Gastineau
S
,
Frigout
A
, et al
.
Acquired resistance to a GPRC5D-directed T-cell engager in multiple myeloma is mediated by genetic or epigenetic target inactivation [published correction appears in Nat Cancer. 2023;4(11):1610]
.
Nat Cancer
.
2023
;
4
(
11
):
1536
-
1543
.
17.
Mi
X
,
Penson
A
,
Abdel-Wahab
O
,
Mailankody
S
.
Genetic basis of relapse after GPRC5D-targeted CAR T cells
.
N Engl J Med
.
2023
;
389
(
15
):
1435
-
1437
.
18.
Li
H
,
Durbin
R
.
Fast and accurate short read alignment with Burrows-Wheeler transform
.
Bioinformatics
.
2009
;
25
(
14
):
1754
-
1760
.
19.
Truger
MS
,
Duell
J
,
Zhou
X
, et al
.
Single- and double-hit events in genes encoding immune targets before and after T cell-engaging antibody therapy in MM
.
Blood Adv
.
2021
;
5
(
19
):
3794
-
3798
.
20.
Fishilevich
S
,
Nudel
R
,
Rappaport
N
, et al
.
GeneHancer: genome-wide integration of enhancers and target genes in GeneCards
.
Database (Oxford)
.
2017
;
2017
:
bax028
.
21.
Wang
Y
,
Cao
J
,
Gu
W
, et al
.
Long-term follow-up of combination of B-cell maturation antigen and CD19 chimeric antigen receptor T cells in multiple myeloma
.
J Clin Oncol
.
2022
;
40
(
20
):
2246
-
2256
.
22.
Brudno
JN
,
Maric
I
,
Hartman
SD
, et al
.
T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma
.
J Clin Oncol
.
2018
;
36
(
22
):
2267
-
2280
.
23.
Beksac
M
,
Balli
S
,
Akcora Yildiz
D
.
Drug targeting of genomic instability in multiple myeloma
.
Front Genet
.
2020
;
11
:
228
.
24.
Zhou
D
,
Sun
Q
,
Xia
J
, et al
.
Anti-BCMA/GPRC5D bispecific CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, single-centre, phase 1 trial
.
Lancet Haematol
.
2024
;
11
(
10
):
e751
-
e760
.
25.
Choudhury
SR
,
Ashby
C
,
Tytarenko
R
, et al
.
The functional epigenetic landscape of aberrant gene expression in molecular subgroups of newly diagnosed multiple myeloma
.
J Hematol Oncol
.
2020
;
13
(
1
):
108
.
26.
Agirre
X
,
Castellano
G
,
Pascual
M
, et al
.
Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers
.
Genome Res
.
2015
;
25
(
4
):
478
-
487
.
27.
Wang
Q
,
Xiong
F
,
Wu
G
, et al
.
Gene body methylation in cancer: molecular mechanisms and clinical applications
.
Clin Epigenetics
.
2022
;
14
(
1
):
154
.
28.
Nishiyama
A
,
Nakanishi
M
.
Navigating the DNA methylation landscape of cancer
.
Trends Genet
.
2021
;
37
(
11
):
1012
-
1027
.
29.
Han
S
,
Munawar
U
,
Haertle
L
, et al
.
Functional characterization of GPRC5D alteration and its impact on talquetamab resistance in relapsed/refractory multiple myeloma [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
3323
.
30.
DiNardo
CD
,
Jonas
BA
,
Pullarkat
V
, et al
.
Azacitidine and venetoclax in previously untreated acute myeloid leukemia
.
N Engl J Med
.
2020
;
383
(
7
):
617
-
629
.
You do not currently have access to this content.
Sign in via your Institution