• SRSF2 mutations blunt responsiveness of MDS cells to IFN stimulation and promote their clonal fitness by downregulating STAT1 expression.

  • Proteasome inhibition restores STAT1 protein level and sensitivity of SRSF2-mutant MDS cells to IFN, suggesting a new therapeutic strategy.

Abstract

Myelodysplastic syndromes (MDSs) are myeloid malignancies often driven by mutations in genes encoding splicing factors (SFs). How these mutations drive the clonal expansion of MDS stem/progenitor cells to outcompete normal hematopoietic stem/progenitor cells (HSPCs) remains unexplained. Although a role for inflammatory processes in promoting clonal expansion of mutant HSPCs and MDS pathogenesis has been proposed, the specific mechanisms implicated remain incompletely understood. In this study, using human isogenic induced pluripotent stem cell–based models of SRSF2-mutant MDS and primary cells from patients with MDS, we show that the SRSF2 P95L mutation downregulates basal STAT1 expression. STAT1 downregulation dampens interferon (IFN) signaling in MDS stem/progenitor cells, which, unlike normal HSPCs, show resistance to the suppression of clonogenic ability by IFNs. Treatment with the proteasome inhibitor bortezomib increased STAT1 protein levels and restored the sensitivity of SRSF2-mutant cells to inflammatory stimuli. These results indicate that rewiring of STAT1 signaling by SRSF2 mutations blunts responsiveness to IFNs, conferring clonal fitness to SRSF2-mutant HSPCs against normal HSPCs in the presence of inflammatory stimuli. Our study provides a novel mechanistic link between SF mutations and inflammatory dysregulation and suggests proteasome inhibition as a potential strategy to treat MDS with SRSF2 mutations.

1.
Cazzola
M
.
Myelodysplastic syndromes
.
N Engl J Med
.
2020
;
383
(
14
):
1358
-
1374
.
2.
Flores-Figueroa
E
,
Gutiérrez-Espindola
G
,
Guerrero-Rivera
S
,
Pizzuto-Chavez
J
,
Mayani
H
.
Hematopoietic progenitor cells from patients with myelodysplastic syndromes: in vitro colony growth and long-term proliferation
.
Leuk Res
.
1999
;
23
(
4
):
385
-
394
.
3.
Kotini
AG
,
Chang
CJ
,
Boussaad
I
, et al
.
Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells
.
Nat Biotechnol
.
2015
;
33
(
6
):
646
-
655
.
4.
Kotini
AG
,
Chang
CJ
,
Chow
A
, et al
.
Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia
.
Cell Stem Cell
.
2017
;
20
(
3
):
315
-
328.e7
.
5.
Chang
CJ
,
Kotini
AG
,
Olszewska
M
, et al
.
Dissecting the contributions of cooperating gene mutations to cancer phenotypes and drug responses with patient-derived iPSCs
.
Stem Cell Rep
.
2018
;
10
(
5
):
1610
-
1624
.
6.
Trowbridge
JJ
,
Starczynowski
DT
.
Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS
.
J Exp Med
.
2021
;
218
(
7
):
e20201544
.
7.
Ogawa
S
.
Genetics of MDS
.
Blood
.
2019
;
133
(
10
):
1049
-
1059
.
8.
Pellagatti
A
,
Boultwood
J
.
Splicing factor mutations in the myelodysplastic syndromes: Role of key aberrantly spliced genes in disease pathophysiology and treatment
.
Adv Biol Regul
.
2023
;
87
:
100920
.
9.
Kim
E
,
Ilagan
JO
,
Liang
Y
, et al
.
SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition
.
Cancer Cell
.
2015
;
27
(
5
):
617
-
630
.
10.
Wheeler
EC
,
Vora
S
,
Mayer
D
, et al
.
Integrative RNA-omics discovers GNAS alternative splicing as a phenotypic driver of splicing factor-mutant neoplasms
.
Cancer Discov
.
2022
;
12
(
3
):
836
-
855
.
11.
Saez
B
,
Walter
MJ
,
Graubert
TA
.
Splicing factor gene mutations in hematologic malignancies
.
Blood
.
2017
;
129
(
10
):
1260
-
1269
.
12.
Hsu
J
,
Reilly
A
,
Hayes
BJ
, et al
.
Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes
.
Blood
.
2019
;
134
(
2
):
186
-
198
.
13.
Rhyasen
GW
,
Bolanos
L
,
Fang
J
, et al
.
Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome
.
Cancer Cell
.
2013
;
24
(
1
):
90
-
104
.
14.
Wang
T
,
Pine
AR
,
Kotini
AG
, et al
.
Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets
.
Cell Stem Cell
.
2021
;
28
(
6
):
1074
-
1089.e7
.
15.
Muto
T
,
Walker
CS
,
Choi
K
, et al
.
Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs
.
Nat Immunol
.
2020
;
21
(
5
):
535
-
545
.
16.
Gopal
A
,
Ibrahim
R
,
Fuller
M
, et al
.
TIRAP drives myelosuppression through an Ifnγ-Hmgb1 axis that disrupts the endothelial niche in mice
.
J Exp Med
.
2022
;
219
(
3
):
e20200731
.
17.
Platanias
LC
.
Mechanisms of type-I- and type-II-interferon-mediated signalling
.
Nat Rev Immunol
.
2005
;
5
(
5
):
375
-
386
.
18.
Kotini
AG
,
Carcamo
S
,
Cruz-Rodriguez
N
, et al
.
Patient-derived iPSCs faithfully represent the genetic diversity and cellular architecture of human acute myeloid leukemia
.
Blood Cancer Discov
.
2023
;
4
(
4
):
318
-
335
.
19.
Zhang
Y
,
Chen
Y
,
Yun
H
,
Liu
Z
,
Su
M
,
Lai
R
.
STAT1β enhances STAT1 function by protecting STAT1α from degradation in esophageal squamous cell carcinoma
.
Cell Death Dis
.
2017
;
8
(
10
):
e3077
.
20.
Yuasa
K
,
Hijikata
T
.
Distal regulatory element of the STAT1 gene potentially mediates positive feedback control of STAT1 expression
.
Genes Cells
.
2016
;
21
(
1
):
25
-
40
.
21.
Demerdash
Y
,
Kain
B
,
Essers
MAG
,
King
KY
.
Yin and Yang: the dual effects of interferons on hematopoiesis
.
Exp Hematol
.
2021
;
96
:
1
-
12
.
22.
Essers
MA
,
Offner
S
,
Blanco-Bose
WE
, et al
.
IFNalpha activates dormant haematopoietic stem cells in vivo
.
Nature
.
2009
;
458
(
7240
):
904
-
908
.
23.
Baldridge
MT
,
King
KY
,
Boles
NC
,
Weksberg
DC
,
Goodell
MA
.
Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection
.
Nature
.
2010
;
465
(
7299
):
793
-
797
.
24.
de Bruin
AM
,
Demirel
Ö
,
Hooibrink
B
,
Brandts
CH
,
Nolte
MA
.
Interferon-γ impairs proliferation of hematopoietic stem cells in mice
.
Blood
.
2013
;
121
(
18
):
3578
-
3585
.
25.
Alvarado
LJ
,
Huntsman
HD
,
Cheng
H
, et al
.
Eltrombopag maintains human hematopoietic stem and progenitor cells under inflammatory conditions mediated by IFN-γ
.
Blood
.
2019
;
133
(
19
):
2043
-
2055
.
You do not currently have access to this content.
Sign in via your Institution