• Unique molecular features of Super-class HSCs were identified through analyses of single-clone serial transplants.

  • Low expression of CD27 is a key characteristic of Super-class HSCs, and CD27 HSCs display superior transplantability.

Abstract

Hematopoietic stem cells (HSCs) are heterogeneous, and the quality of HSCs—that is, transplantability—is a key determinant for posttransplant hematopoietic reconstitution. However, molecular modalities of high-potency HSCs with superior transplantability still remain poorly understood. Here, we conducted large-scale single-clone serial-transplant experiments and tracked descendant cells of 288 HSC clones to quantify their intrinsic capability for hematopoietic reconstitution. Using integrated single-cell transcriptional, immunophenotypical, and Bayesian dynamic analyses, we uncovered 3 classes of HSC clones (“Super,” “Flash,” and “Trickle”) that had higher output in the first generation but exhibited markedly different behavior in later generations. The Super-class HSC clones comprised 4% of the HSCs and manifested persistent superior transplantability and balanced myeloid/lymphoid–lineage outputs across generations in serial transplants. The Super-class HSCs had a unique molecular signature, including low expression of CD27, that was distinct from previously known classical HSC signatures. Validation experiments indicated that CD27 HSCs had superior transplantability compared with CD27+ HSCs. Our study asserted an operational definition for Super transplantability of HSCs, defined its molecular program, and suggested new directions for enriching high-potency HSCs in grafts.

1.
Sun
J
,
Ramos
A
,
Chapman
B
, et al
.
Clonal dynamics of native haematopoiesis
.
Nature
.
2014
;
514
(
7522
):
322
-
327
.
2.
Busch
K
,
Klapproth
K
,
Barile
M
, et al
.
Fundamental properties of unperturbed haematopoiesis from stem cells in vivo
.
Nature
.
2015
;
518
(
7540
):
542
-
546
.
3.
Bernitz
JM
,
Kim
HS
,
MacArthur
B
,
Sieburg
H
,
Moore
K
.
Hematopoietic stem cells count and remember self-renewal divisions
.
Cell
.
2016
;
167
(
5
):
1296
-
1309.e10
.
4.
Sawai
CM
,
Babovic
S
,
Upadhaya
S
, et al
.
Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals
.
Immunity
.
2016
;
45
(
3
):
597
-
609
.
5.
Pei
W
,
Shang
F
,
Wang
X
, et al
.
Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by PolyloxExpress barcoding
.
Cell Stem Cell
.
2020
;
27
(
3
):
383
-
395.e8
.
6.
Chen
J
,
Gale
RP
.
Are haematopoietic stem cell transplants stem cell transplants, is there a threshold dose of CD34-positive cells and how many are needed for rapid posttransplant granulocyte recovery?
.
Leukemia
.
2023
;
37
(
10
):
1963
-
1968
.
7.
Feng
Y
,
Qi
S
,
Hu
Y
, et al
.
New criteria for estimating numbers of CD34-positive cells in a graft needed for posttransplant bone marrow recovery
.
Leukemia
.
2024
;
38
(
12
):
2735
-
2738
.
8.
Carrelha
J
,
Meng
Y
,
Kettyle
LM
, et al
.
Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells
.
Nature
.
2018
;
554
(
7690
):
106
-
111
.
9.
Yamamoto
R
,
Wilkinson
AC
,
Ooehara
J
, et al
.
Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment
.
Cell Stem Cell
.
2018
;
22
(
4
):
600
-
607.e4
.
10.
Kimura
M
,
Ohta
T
.
The average number of generations until fixation of a mutant gene in a finite population
.
Genetics
.
1969
;
61
(
3
):
763
-
771
.
11.
Kimura
M
.
Evolutionary rate at the molecular level
.
Nature
.
1968
;
217
(
5129
):
624
-
626
.
12.
Yamamoto
R
,
Morita
Y
,
Ooehara
J
, et al
.
Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells
.
Cell
.
2013
;
154
(
5
):
1112
-
1126
.
13.
Dong
F
,
Hao
S
,
Zhang
S
, et al
.
Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis
.
Nat Cell Biol
.
2020
;
22
(
6
):
630
-
639
.
14.
Islam
S
,
Kjällquist
U
,
Moliner
A
, et al
.
Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
.
Genome Res
.
2011
;
21
(
7
):
1160
-
1167
.
15.
Islam
S
,
Zeisel
A
,
Joost
S
, et al
.
Quantitative single-cell RNA-seq with unique molecular identifiers
.
Nat Methods
.
2014
;
11
(
2
):
163
-
166
.
16.
Picelli
S
,
Björklund
ÅK
,
Faridani
OR
,
Sagasser
S
,
Winberg
G
,
Sandberg
R
.
Smart-seq2 for sensitive full-length transcriptome profiling in single cells
.
Nat Methods
.
2013
;
10
(
11
):
1096
-
1098
.
17.
Picelli
S
,
Faridani
OR
,
Björklund
AK
,
Winberg
G
,
Sagasser
S
,
Sandberg
R
.
Full-length RNA-seq from single cells using Smart-seq2
.
Nat Protoc
.
2014
;
9
(
1
):
171
-
181
.
18.
Kim
D
,
Langmead
B
,
Salzberg
SL
.
HISAT: a fast spliced aligner with low memory requirements
.
Nat Methods
.
2015
;
12
(
4
):
357
-
360
.
19.
Wolf
FA
,
Angerer
P
,
Theis
FJ
.
SCANPY: large-scale single-cell gene expression data analysis
.
Genome Biol
.
2018
;
19
(
1
):
15
.
20.
Trapnell
C
,
Cacchiarelli
D
,
Grimsby
J
, et al
.
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
.
Nat Biotechnol
.
2014
;
32
(
4
):
381
-
386
.
21.
Fan
Y
,
Li
L
,
Sun
S
.
Powerful and accurate detection of temporal gene expression patterns from multi-sample multi-stage single-cell transcriptomics data with TDEseq
.
Genome Biol
.
2024
;
25
(
1
):
96
.
22.
Zhou
Y
,
Zhou
B
,
Pache
L
, et al
.
Metascape provides a biologist-oriented resource for the analysis of systems-level datasets
.
Nat Commun
.
2019
;
10
(
1
):
1523
.
23.
Rodriguez-Fraticelli
AE
,
Weinreb
C
,
Wang
SW
, et al
.
Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis
.
Nature
.
2020
;
583
(
7817
):
585
-
589
.
24.
Wilson
NK
,
Kent
DG
,
Buettner
F
, et al
.
Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations
.
Cell Stem Cell
.
2015
;
16
(
6
):
712
-
724
.
25.
Pronk
CJ
,
Rossi
DJ
,
Månsson
R
, et al
.
Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
.
Cell Stem Cell
.
2007
;
1
(
4
):
428
-
442
.
26.
Giladi
A
,
Paul
F
,
Herzog
Y
, et al
.
Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis
.
Nat Cell Biol
.
2018
;
20
(
7
):
836
-
846
.
27.
Cuitino
MC
,
Pécot
T
,
Sun
D
, et al
.
Two distinct E2F transcriptional modules drive cell cycles and differentiation
.
Cell Rep
.
2019
;
27
(
12
):
3547
-
3560.e5
.
28.
Venezia
TA
,
Merchant
AA
,
Ramos
CA
, et al
.
Molecular signatures of proliferation and quiescence in hematopoietic stem cells
.
Plos Biol
.
2004
;
2
(
10
):
e301
.
29.
Dykstra
B
,
Kent
D
,
Bowie
M
, et al
.
Long-term propagation of distinct hematopoietic differentiation programs in vivo
.
Cell stem cell
.
2007
;
1
(
2
):
218
-
229
.
30.
Voit
RA
,
Tao
L
,
Yu
F
, et al
.
A genetic disorder reveals a hematopoietic stem cell regulatory network co-opted in leukemia
.
Nat Immunol
.
2023
;
24
(
1
):
69
-
83
.
31.
Pietras
EM
,
Reynaud
D
,
Kang
YA
, et al
.
Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions
.
Cell Stem Cell
.
2015
;
17
(
1
):
35
-
46
.
32.
Kowalczyk
MS
,
Tirosh
I
,
Heckl
D
, et al
.
Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells
.
Genome Res
.
2015
;
25
(
12
):
1860
-
1872
.
33.
Cabezas-Wallscheid
N
,
Buettner
F
,
Sommerkamp
P
, et al
.
Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy
.
Cell
.
2017
;
169
(
5
):
807
-
823.e19
.
34.
Liang
R
,
Arif
T
,
Kalmykova
S
, et al
.
Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency
.
Cell Stem Cell
.
2020
;
26
(
3
):
359
-
376.e7
.
35.
Takayama
N
,
Murison
A
,
Takayanagi
SI
, et al
.
The transition from quiescent to activated states in human hematopoietic stem cells is governed by dynamic 3D genome reorganization
.
Cell Stem Cell
.
2021
;
28
(
3
):
488
-
501.e10
.
36.
Knudsen
KJ
,
Rehn
M
,
Hasemann
MS
, et al
.
ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation
.
Genes Dev
.
2015
;
29
(
18
):
1915
-
1929
.
37.
Xie
Y
,
Koch
ML
,
Zhang
X
, et al
.
Reduced Erg dosage impairs survival of hematopoietic stem and progenitor cells
.
Stem Cells
.
2017
;
35
(
7
):
1773
-
1785
.
38.
Xu
C-X
,
Lee
TJ
,
Sakurai
N
, et al
.
ETV2/ER71 regulates hematopoietic regeneration by promoting hematopoietic stem cell proliferation
.
J Exp Med
.
2017
;
214
(
6
):
1643
-
1653
.
39.
Willis
SN
,
Tellier
J
,
Liao
Y
, et al
.
Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB
.
Nat Commun
.
2017
;
8
(
1
):
1426
.
40.
Scala
S
,
Basso-Ricci
L
,
Dionisio
F
, et al
.
Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans
.
Nat Med
.
2018
;
24
(
11
):
1683
-
1690
.
41.
Aksöz
M
,
Gafencu
GA
,
Stoilova
B
, et al
.
Hematopoietic stem cell heterogeneity and age-associated platelet bias are evolutionarily conserved
.
Sci Immunol
.
2024
;
9
(
98
):
eadk3469
.
42.
Huo
Y
,
Wu
L
,
Pang
A
, et al
.
Single-cell dissection of human hematopoietic reconstitution after allogeneic hematopoietic stem cell transplantation
.
Sci Immunol
.
2023
;
8
(
81
):
eabn6429
.
43.
Sanjuan-Pla
A
,
Macaulay
IC
,
Jensen
CT
, et al
.
Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
.
Nature
.
2013
;
502
(
7470
):
232
-
236
.
44.
Following Koch’s example
.
Nat Rev Microbiol
.
2005
;
3
(
12
):
906
.
45.
Wiesmann
A
,
Phillips
RL
,
Mojica
M
, et al
.
Expression of CD27 on murine hematopoietic stem and progenitor cells
.
Immunity
.
2000
;
12
(
2
):
193
-
199
.
46.
Nolte
MA
,
Arens
R
,
van Os
R
, et al
.
Immune activation modulates hematopoiesis through interactions between CD27 and CD70
.
Nat Immunol
.
2005
;
6
(
4
):
412
-
418
.
47.
Vazquez
SE
,
Inlay
MA
,
Serwold
T
.
CD201 and CD27 identify hematopoietic stem and progenitor cells across multiple murine strains independently of Kit and Sca-1
.
Exp Hematol
.
2015
;
43
(
7
):
578
-
585
.
48.
Salzmann-Manrique
E
,
Bremm
M
,
Huenecke
S
, et al
.
Joint modeling of immune reconstitution post haploidentical stem cell transplantation in pediatric patients with acute leukemia comparing CD34(+)-selected to CD3/CD19-depleted grafts in a retrospective multicenter study
.
Front Immunol
.
2018
;
9
:
1841
.
49.
Nowlan
B
,
Williams
ED
,
Doran
MR
,
Levesque
JP
.
CD27, CD201, FLT3, CD48, and CD150 cell surface staining identifies long-term mouse hematopoietic stem cells in immunodeficient non-obese diabetic severe combined immune deficient-derived strains
.
Haematologica
.
2020
;
105
(
1
):
71
-
82
.
50.
Gao
S
,
Shi
Q
,
Zhang
Y
, et al
.
Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics
.
Cell Res
.
2022
;
32
(
1
):
38
-
53
.
51.
Matsuoka
Y
,
Sasaki
Y
,
Nakatsuka
R
, et al
.
Low level of c-kit expression marks deeply quiescent murine hematopoietic stem cells
.
Stem Cells
.
2011
;
29
(
11
):
1783
-
1791
.
52.
Grinenko
T
,
Arndt
K
,
Portz
M
, et al
.
Clonal expansion capacity defines two consecutive developmental stages of long-term hematopoietic stem cells
.
J Exp Med
.
2014
;
211
(
2
):
209
-
215
.
53.
Shin
JY
,
Hu
W
,
Naramura
M
,
Park
CY
.
High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias
.
J Exp Med
.
2014
;
211
(
2
):
217
-
231
.
You do not currently have access to this content.
Sign in via your Institution