Abstract

Inherited bone marrow failure syndromes (IBMFS) are genetic disorders of impaired hematopoiesis that manifest in childhood with both cytopenias and extrahematologic findings. Although several IBMFS are categorized as ribosomopathies owing to shared underlying ribosomal dysfunction, there is a broader disruption of the protein homeostasis (proteostasis) network across both classic and emerging IBMFS. Precise regulation of the proteostasis network, including mechanisms of protein synthesis, folding, trafficking, and degradation and associated stress response pathways, has emerged as essential for maintaining hematopoietic stem cell function, providing new potential mechanistic insights into IBMFS pathogenesis. Furthermore, the varied clinical trajectories of patients with IBMFS with possible divergent outcomes of malignancy and spontaneous remission may reflect developmental and temporal changes in proteostasis activity and be driven by strong selective pressures to restore proteostasis. These new insights are spurring fresh therapeutic approaches to target proteostasis. Thus, further evaluation of proteostasis regulation and the consequences of proteostasis disruption in IBMFS could aid in developing new biomarkers, therapeutic agents, and preventive approaches for patients.

1.
Dokal
I
,
Tummala
H
,
Vulliamy
TJ
.
Inherited bone marrow failure in the pediatric patient
.
Blood
.
2022
;
140
(
6
):
556
-
570
.
2.
Shimamura
A
,
Alter
BP
.
Pathophysiology and management of inherited bone marrow failure syndromes
.
Blood Rev
.
2010
;
24
(
3
):
101
-
122
.
3.
Ruggero
D
,
Shimamura
A
.
Marrow failure: a window into ribosome biology
.
Blood
.
2014
;
124
(
18
):
2784
-
2792
.
4.
Mills
EW
,
Green
R
.
Ribosomopathies: there’s strength in numbers
.
Science
.
2017
;
358
(
6363
):
eaan2755
.
5.
Sakamoto
KM
,
Shimamura
A
,
Davies
SM
.
Congenital disorders of ribosome biogenesis and bone marrow failure
.
Biol Blood Marrow Transpl
.
2010
;
16
(
suppl 1
):
S12
-
S17
.
6.
Narla
A
,
Ebert
BL
.
Ribosomopathies: human disorders of ribosome dysfunction
.
Blood
.
2010
;
115
(
16
):
3196
-
3205
.
7.
Signer
RAJ
,
Magee
JA
,
Salic
A
,
Morrison
SJ
.
Haematopoietic stem cells require a highly regulated protein synthesis rate
.
Nature
.
2014
;
509
(
7498
):
49
-
54
.
8.
Hidalgo San Jose
L
,
Sunshine
MJ
,
Dillingham
CH
, et al
.
Modest declines in proteome quality impair hematopoietic stem cell self-renewal
.
Cell Rep
.
2020
;
30
(
1
):
69
-
80.e6
.
9.
Chua
BA
,
Lennan
CJ
,
Sunshine
MJ
, et al
.
Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis
.
Cell Stem Cell
.
2023
;
30
(
4
):
460
-
472.e6
.
10.
Van Galen
P
,
Kreso
A
,
Mbong
N
, et al
.
The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress
.
Nature
.
2014
;
510
(
7504
):
268
-
272
.
11.
Herrejon Chavez
F
,
Luo
H
,
Cifani
P
, et al
.
RNA binding protein SYNCRIP maintains proteostasis and self-renewal of hematopoietic stem and progenitor cells
.
Nat Commun
.
2023
;
14
(
1
):
2290
.
12.
Chapple
RH
,
Hu
T
,
Tseng
YJ
, et al
.
ERα promotes murine hematopoietic regeneration through the ire1α-mediated unfolded protein response
.
Elife
.
2018
;
7
:
1
-
25
.
13.
Xie
SZ
,
Garcia-Prat
L
,
Voisin
V
, et al
.
Sphingolipid modulation activates proteostasis programs to govern human hematopoietic stem cell self-renewal
.
Cell Stem Cell
.
2019
;
25
(
5
):
639
-
653.e7
.
14.
Chua
BA
,
Signer
RAJ
.
Hematopoietic stem cell regulation by the proteostasis network
.
Curr Opin Hematol
.
2020
;
27
(
4
):
254
-
263
.
15.
Signer
RAJ
,
Qi
L
,
Zhao
Z
, et al
.
The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs
.
Genes Dev
.
2016
;
30
(
15
):
1698
-
1703
.
16.
Li
C
,
Wu
B
,
Li
Y
, et al
.
Amino acid catabolism regulates hematopoietic stem cell proteostasis via a GCN2-eIF2α axis
.
Cell Stem Cell
.
2022
;
29
(
7
):
1119
-
1134.e7
.
17.
Moran-Crusio
K
,
Reavie
LB
,
Aifantis
I
.
Regulation of hematopoietic stem cell fate by the ubiquitin proteasome system
.
Trends Immunol
.
2012
;
33
(
7
):
357
-
363
.
18.
Thompson
BJ
,
Jankovic
V
,
Gao
J
, et al
.
Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7
.
J Exp Med
.
2008
;
205
(
6
):
1395
-
1408
.
19.
King
B
,
Boccalatte
F
,
Moran-Crusio
K
, et al
.
The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells
.
Nat Immunol
.
2016
;
17
(
11
):
1312
-
1321
.
20.
Reavie
L
,
Della Gatta
G
,
Crusio
K
, et al
.
Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex
.
Nat Immunol
.
2010
;
11
(
3
):
207
-
215
.
21.
Ho
TT
,
Warr
MR
,
Adelman
ER
, et al
.
Autophagy maintains the metabolism and function of young and old stem cells
.
Nature
.
2017
;
543
(
7644
):
205
-
210
.
22.
Mortensen
M
,
Soilleux
EJ
,
Djordjevic
G
, et al
.
The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance
.
J Exp Med
.
2011
;
208
(
3
):
455
-
467
.
23.
Borsa
M
,
Obba
S
,
Richter
FC
, et al
.
Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism
.
Autophagy
.
2024
;
20
(
1
):
45
-
57
.
24.
Warr
MR
,
Binnewies
M
,
Flach
J
, et al
.
FOXO3A directs a protective autophagy program in haematopoietic stem cells
.
Nature
.
2013
;
494
(
7437
):
323
-
327
.
25.
Mortensen
M
,
Watson
AS
,
Simon
AK
.
Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation
.
Autophagy
.
2011
;
7
(
9
):
1069
-
1070
.
26.
Riffelmacher
T
,
Clarke
A
,
Richter
FC
, et al
.
Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation
.
Immunity
.
2017
;
47
(
3
):
466
-
480.e5
.
27.
Mortensen
M
,
Ferguson
DJP
,
Edelmann
M
, et al
.
Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
2
):
832
-
837
.
28.
van Galen
P
,
Mbong
N
,
Kreso
A
, et al
.
Integrated stress response activity marks stem cells in normal hematopoiesis and leukemia
.
Cell Rep
.
2018
;
25
(
5
):
1109
-
1117.e5
.
29.
Zhu
Y
,
Poyurovsky
MV
,
Li
Y
, et al
.
Ribosomal protein S7 is both a regulator and a substrate of MDM2
.
Mol Cell
.
2009
;
35
(
3
):
316
-
326
.
30.
Kruta
M
,
Sunshine
MJ
,
Chua
BA
, et al
.
Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging
.
Cell Stem Cell
.
2021
;
28
(
11
):
1950
-
1965.e6
.
31.
Ulirsch
JC
,
Verboon
JM
,
Kazerounian
S
, et al
.
The genetic landscape of Diamond-Blackfan anemia
.
Am J Hum Genet
.
2018
;
103
(
6
):
930
-
947
.
32.
Draptchinskaia
N
,
Gustavsson
P
,
Andersson
B
, et al
.
The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia
.
Nat Genet
.
1999
;
21
(
2
):
169
-
175
.
33.
Moore
JB
,
Farrar
JE
,
Arceci
RJ
,
Liu
JM
,
Ellis
SR
.
Distinct ribosome maturation defects in yeast models of Diamond-Blackfan anemia and Shwachman-Diamond syndrome
.
Haematologica
.
2010
;
95
(
1
):
57
-
64
.
34.
Garçon
L
,
Ge
J
,
Manjunath
SH
, et al
.
Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients
.
Blood
.
2013
;
122
(
6
):
912
-
921
.
35.
Ludwig
LS
,
Gazda
HT
,
Eng
JC
, et al
.
Altered translation of GATA1 in Diamond-Blackfan anemia
.
Nat Med
.
2014
;
20
(
7
):
748
-
753
.
36.
Recasens-Alvarez
C
,
Alexandre
C
,
Kirkpatrick
J
, et al
.
Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition
.
Nat Cell Biol
.
2021
;
23
(
2
):
127
-
135
.
37.
Crétien
A
,
Hurtaud
C
,
Moniz
H
, et al
.
Study of the effects of proteasome inhibitors on ribosomal protein S19 (RPS19) mutants, identified in patients with Diamond-Blackfan anemia
.
Haematologica
.
2008
;
93
(
11
):
1627
-
1634
.
38.
Doulatov
S
,
Vo
LT
,
Macari
ER
, et al
.
Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors
.
Sci Transl Med
.
2017
;
9
(
376
):
eaah5645
.
39.
Gastou
M
,
Rio
S
,
Dussiot
M
, et al
.
The severe phenotype of Diamond-Blackfan anemia is modulated by heat shock protein 70
.
Blood Adv
.
2017
;
1
(
22
):
1959
-
1976
.
40.
Weis
F
,
Giudice
E
,
Churcher
M
, et al
.
Mechanism of eIF6 release from the nascent 60S ribosomal subunit
.
Nat Struct Mol Biol
.
2015
;
22
(
11
):
914
-
919
.
41.
Burwick
N
,
Coats
SA
,
Nakamura
T
,
Shimamura
A
.
Impaired ribosomal subunit association in Shwachman-Diamond syndrome
.
Blood
.
2012
;
120
(
26
):
5143
-
5152
.
42.
Sezgin
G
,
Henson
AL
,
Nihrane
A
, et al
.
Impaired growth, hematopoietic colony formation, and ribosome maturation in human cells depleted of Shwachman-Diamond syndrome protein SBDS
.
Pediatr Blood Cancer
.
2013
;
60
(
2
):
281
-
286
.
43.
Tan
S
,
Kermasson
L
,
Hoslin
A
, et al
.
EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome
.
Blood
.
2019
;
134
(
3
):
277
-
290
.
44.
Calamita
P
,
Miluzio
A
,
Russo
A
, et al
.
SBDS-deficient cells have an altered homeostatic equilibrium due to translational inefficiency which explains their reduced fitness and provides a logical framework for intervention
.
Plos Genet
.
2017
;
13
(
1
):
e1006552
.
45.
Lee
S
,
Shin
CH
,
Lee
J
, et al
.
Somatic uniparental disomy mitigates the most damaging EFL1 allele combination in Shwachman-Diamond syndrome
.
Blood
.
2021
;
138
(
21
):
2117
-
2128
.
46.
Wong
CC
,
Traynor
D
,
Basse
N
,
Kay
RR
,
Warren
AJ
.
Defective ribosome assembly in Shwachman-Diamond syndrome
.
Blood
.
2011
;
118
(
16
):
4305
-
4312
.
47.
Jaako
P
,
Faille
A
,
Tan
S
, et al
.
eIF6 rebinding dynamically couples ribosome maturation and translation
.
Nat Commun
.
2022
;
13
(
1
):
1562
.
48.
Dhanraj
S
,
Matveev
A
,
Li
H
, et al
.
Biallelic mutations in DNAJC21 cause Shwachman-Diamond syndrome
.
Blood
.
2017
;
129
(
11
):
1557
-
1562
.
49.
Tummala
H
,
Walne
AJ
,
Williams
M
, et al
.
DNAJC21 mutations link a cancer-prone bone marrow failure syndrome to corruption in 60S ribosome subunit maturation
.
Am J Hum Genet
.
2016
;
99
(
1
):
115
-
124
.
50.
In
K
,
Zaini
MA
,
Müller
C
,
Warren
AJ
,
von Lindern
M
,
Calkhoven
CF
.
Shwachman-Bodian-Diamond syndrome (SBDS) protein deficiency impairs translation re-initiation from C/EBPα and C/EBPβ mRNAs
.
Nucleic Acids Res
.
2016
;
44
(
9
):
4134
-
4146
.
51.
Rujkijyanont
P
,
Adams
SL
,
Beyene
J
,
Dror
Y
.
Bone marrow cells from patients with Shwachman-Diamond syndrome abnormally express genes involved in ribosome biogenesis and RNA processing
.
Br J Haematol
.
2009
;
145
(
6
):
806
-
815
.
52.
Ketharnathan
S
,
Pokharel
S
,
Prykhozhij
SV
, et al
.
Loss of Dnajc21 leads to cytopenia and altered nucleotide metabolism in zebrafish
.
Leukemia
.
2024;
;
38
(
10
):
2115
-
2126
.
53.
Bezzerri
V
,
Lentini
L
,
Api
M
, et al
.
Novel translational read-through–inducing drugs as a therapeutic option for Shwachman-Diamond syndrome
.
Biomedicines
.
2022
;
10
(
4
):
886
.
54.
Bezzerri
V
,
Bardelli
D
,
Morini
J
, et al
.
Ataluren-driven restoration of Shwachman-Bodian-Diamond syndrome protein function in Shwachman-Diamond syndrome bone marrow cells
.
Am J Hematol
.
2018
;
93
(
4
):
527
-
536
.
55.
Cipolli
M
,
Boni
C
,
Penzo
M
, et al
.
Ataluren improves myelopoiesis and neutrophil chemotaxis by restoring ribosome biogenesis and reducing p53 levels in Shwachman–Diamond syndrome cells
.
Br J Haematol
.
2024
;
204
(
1
):
292
-
305
.
56.
Bellanné-Chantelot
C
,
Schmaltz-Panneau
B
,
Marty
C
, et al
.
Mutations in the SRP54 gene cause severe congenital neutropenia as well as Shwachman-Diamond – Like syndrome
.
Blood
.
2018
;
132
(
12
):
1318
-
1331
.
57.
Carapito
R
,
Konantz
M
,
Paillard
C
, et al
.
Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features
.
J Clin Invest
.
2017
;
127
(
11
):
4090
-
4103
.
58.
Necchi
V
,
Minelli
A
,
Sommi
P
, et al
.
Ubiquitin-proteasome-rich cytoplasmic structures in neutrophils of patients with Shwachman-Diamond syndrome
.
Haematologica
.
2012
;
97
(
7
):
1057
-
1063
.
59.
Yoon
A
,
Peng
G
,
Brandenburg
Y
, et al
.
Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita
.
Science
.
2006
;
312
(
5775
):
902
-
906
.
60.
Bellodi
C
,
Kopmar
N
,
Ruggero
D
.
Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita
.
EMBO J
.
2010
;
29
(
11
):
1865
-
1876
.
61.
Knight
SW
,
Heiss
NS
,
Vulliamy
TJ
, et al
.
X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene
.
Am J Hum Genet
.
1999
;
65
(
1
):
50
-
58
.
62.
Dannenmann
B
,
Zahabi
A
,
Mir
P
, et al
.
Human iPSC-based model of severe congenital neutropenia reveals elevated UPR and DNA damage in CD34+ cells preceding leukemic transformation [published correction appears in Exp Hematol. 2022;114:61]
.
Exp Hematol
.
2019
;
71
:
51
-
60
.
63.
Nanua
S
,
Murakami
M
,
Xia
J
, et al
.
Activation of the unfolded protein response is associated with impaired granulopoiesis in transgenic mice expressing mutant Elane
.
Blood
.
2011
;
117
(
13
):
3539
-
3547
.
64.
Grenda
DS
,
Murakami
M
,
Ghatak
J
, et al
.
Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis
.
Blood
.
2007
;
110
(
13
):
4179
-
4187
.
65.
Köllner
I
,
Sodeik
B
,
Schreek
S
, et al
.
Mutations in neutrophil elastase causing congenital neutropenia lead to cytoplasmic protein accumulation and induction of the unfolded protein response
.
Blood
.
2006
;
108
(
2
):
493
-
500
.
66.
Benson
KF
,
Li
FQ
,
Person
RE
, et al
.
Mutations associated with neutropenia in dogs and humans disrupt intracellular transport of neutrophil elastase
.
Nat Genet
.
2003
;
35
(
1
):
90
-
96
.
67.
Massullo
P
,
Druhan
LJ
,
Bunnell
BA
, et al
.
Aberrant subcellular targeting of the G185R neutrophil elastase mutant associated with severe congenital neutropenia induces premature apoptosis of differentiating promyelocytes
.
Blood
.
2005
;
105
(
9
):
3397
-
3404
.
68.
Wiesmeier
M
,
Gautam
S
,
Kirschnek
S
,
Häcker
G
.
Characterisation of neutropenia-associated neutrophil elastase mutations in a murine differentiation model in vitro and in vivo
.
PLoS One
.
2016
;
11
(
12
):
e0168055
.
69.
Nustede
R
,
Klimiankou
M
,
Klimenkova
O
, et al
.
ELANE mutant-specific activation of different UPR pathways in congenital neutropenia
.
Br J Haematol
.
2016
;
172
(
2
):
219
-
227
.
70.
Rao
S
,
Yao
Y
,
Soares de Brito
J
, et al
.
Dissecting ELANE neutropenia pathogenicity by human HSC gene editing
.
Cell Stem Cell
.
2021
;
28
(
5
):
833
-
845.e5
.
71.
Van Nieuwenhove
E
,
Barber
JS
,
Neumann
J
, et al
.
Defective Sec61α1 underlies a novel cause of autosomal dominant severe congenital neutropenia
.
J Allergy Clin Immunol
.
2020
;
146
(
5
):
1180
-
1193
.
72.
Doll
L
,
Welte
K
,
Skokowa
J
,
Bajoghli
B
.
A JAGN1-associated severe congenital neutropenia zebrafish model revealed an altered G-CSFR signaling and UPR activation
.
Blood Adv
.
2024
;
8
(
15
):
4050
-
4065
.
73.
Williams
SA
,
Longerich
S
,
Sung
P
,
Vaziri
C
,
Kupfer
GM
.
The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI
.
Blood
.
2011
;
117
(
19
):
5078
-
5087
.
74.
Parmar
K
,
Kim
J
,
Sykes
SM
, et al
.
Hematopoietic stem cell defects in mice with deficiency of Fancd2 or Usp1
.
Stem Cells
.
2010
;
28
(
7
):
1186
-
1195
.
75.
Kovuru
N
,
Mochizuki-kashio
M
,
Menna
T
, et al
.
Deregulated protein homeostasis constrains fetal hematopoietic stem cell pool expansion in Fanconi anemia
.
Nat Commun
.
2024
;
15
(
1
):
1852
.
76.
Gueiderikh
A
,
Maczkowiak-Chartois
F
,
Rouvet
G
, et al
.
Fanconi anemia A protein participates in nucleolar homeostasis maintenance and ribosome biogenesis
.
Sci Adv
.
2021
;
7
(
1
):
eabb5414
.
77.
Oda
T
,
Hayano
T
,
Miyaso
H
,
Takahashi
N
,
Yamashita
T
.
Hsp90 regulates the Fanconi anemia DNA damage response pathway
.
Blood
.
2007
;
109
(
11
):
5016
-
5026
.
78.
Karras
GI
,
Yi
S
,
Sahni
N
, et al
.
HSP90 shapes the consequences of human genetic variation
.
Cell
.
2017
;
168
(
5
):
856
-
866.e12
.
79.
Sondalle
SB
,
Longerich
S
,
Ogawa
LM
,
Sung
P
,
Baserga
SJ
.
Fanconi anemia protein FANCI functions in ribosome biogenesis
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
7
):
2561
-
2570
.
80.
Zhang
F
,
Ji
Q
,
Chaturvedi
J
, et al
.
Human SAMD9 is a poxvirus-activatable anticodon nuclease inhibiting codon-specific protein synthesis
.
Sci Adv
.
2023
;
9
(
23
):
eadh8502
.
81.
Thomas
ME
,
Abdelhamed
S
,
Hiltenbrand
R
, et al
.
Pediatric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hematopoietic cells
.
Leukemia
.
2021
;
35
(
11
):
3232
-
3244
.
82.
Sivan
G
,
Glushakow-Smith
SG
,
Katsafanas
GC
,
Americo
JL
,
Moss
B
.
Human host range restriction of the vaccinia virus C7/K1 double deletion mutant is mediated by an atypical mode of translation inhibition
.
J Virol
.
2018
;
92
(
23
):
e01329-18
.
83.
Allenspach
EJ
,
Soveg
F
,
Finn
LS
, et al
.
Germline SAMD9L truncation variants trigger global translational repression
.
J Exp Med
.
2021
;
218
(
5
):
e20201195
.
84.
Necchi
V
,
Balduini
A
,
Noris
P
, et al
.
Ubiquitin/proteasome-rich particulate cytoplasmic structures (PaCSs) in the platelets and megakaryocytes of ANKRD26-related thrombocytopenia
.
Thromb Haemost
.
2013
;
109
(
2
):
263
-
271
.
85.
Cai
X
,
Gao
L
,
Teng
L
, et al
.
Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells
.
Cell Stem Cell
.
2015
;
17
(
2
):
165
-
177
.
86.
Wlodarski
MW
,
Vlachos
A
,
Farrar
JE
, et al
.
Diagnosis, treatment, and surveillance of Diamond-Blackfan anaemia syndrome: international consensus statement
.
Lancet Haematol
.
2024
;
11
(
5
):
e368
-
e382
.
87.
Magee
JA
,
Signer
RAJ
.
Developmental stage-specific changes in protein synthesis differentially sensitize hematopoietic stem cells and erythroid progenitors to impaired ribosome biogenesis
.
Stem Cell Rep
.
2021
;
16
(
1
):
20
-
28
.
88.
Gazda
HT
,
Kho
AT
,
Sanoudou
D
, et al
.
Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond-Blackfan anemia
.
Stem Cells
.
2006
;
24
(
9
):
2034
-
2044
.
89.
Khajuria
RK
,
Munschauer
M
,
Ulirsch
JC
, et al
.
Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis
.
Cell
.
2018
;
173
(
1
):
90
-
103.e19
.
90.
Iskander
D
,
Wang
G
,
Heuston
EF
, et al
.
Single-cell profiling of human bone marrow progenitors reveals mechanisms of failing erythropoiesis in Diamond-Blackfan anemia
.
Sci Transl Med
.
2021
;
13
(
610
):
eabf0113
.
91.
Dai
MS
,
Lu
H
.
Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5
.
J Biol Chem
.
2004
;
279
(
43
):
44475
-
44482
.
92.
Lohrum
MAE
,
Ludwig
RL
,
Kubbutat
MHG
,
Hanlon
M
,
Vousden
KH
.
Regulation of HDM2 activity by the ribosomal protein L11
.
Cancer Cell
.
2003
;
3
(
6
):
577
-
587
.
93.
Zhang
Y
,
Wolf
GW
,
Bhat
K
, et al
.
Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway
.
Mol Cell Biol
.
2003
;
23
(
23
):
8902
-
8912
.
94.
Bhat
KP
,
Itahana
K
,
Jin
A
,
Zhang
Y
.
Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation
.
EMBO J
.
2004
;
23
(
12
):
2402
-
2412
.
95.
Jin
A
,
Itahana
K
,
O’Keefe
K
,
Zhang
Y
.
Inhibition of HDM2 and activation of p53 by ribosomal protein L23
.
Mol Cell Biol
.
2004
;
24
(
17
):
7669
-
7680
.
96.
Dai
M-S
,
Zeng
SX
,
Jin
Y
,
Sun
XX
,
David
L
,
Lu
H
.
Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition
.
Mol Cell Biol
.
2004
;
24
(
17
):
7654
-
7668
.
97.
Chen
D
,
Zhang
Z
,
Li
M
, et al
.
Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function
.
Oncogene
.
2007
;
26
(
35
):
5029
-
5037
.
98.
Yadavilli
S
,
Mayo
LD
,
Higgins
M
,
Lain
S
,
Hegde
V
,
Deutsch
WA
.
Ribosomal protein S3: a multi-functional protein that interacts with both p53 and MDM2 through its KH domain
.
DNA Repair (Amst)
.
2009
;
8
(
10
):
1215
-
1224
.
99.
Ofir-Rosenfeld
Y
,
Boggs
K
,
Michael
D
,
Kastan
MB
,
Oren
M
.
Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26
.
Mol Cell
.
2008
;
32
(
2
):
180
-
189
.
100.
Gazda
HT
,
Preti
M
,
Sheen
MR
, et al
.
Frameshift mutation in p53 regulator RPL26 is associated with multiple physical abnormalities and a specific pre-ribosomal RNA processing defect in Diamond-Blackfan anemia
.
Hum Mutat
.
2012
;
33
(
7
):
1037
-
1044
.
101.
Dutt
S
,
Narla
A
,
Lin
K
, et al
.
Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells
.
Blood
.
2011
;
117
(
9
):
2567
-
2576
.
102.
Bhoopalan
SV
,
Yen
JS
,
Mayuranathan
T
, et al
.
An RPS19-edited model for Diamond-Blackfan anemia reveals TP53-dependent impairment of hematopoietic stem cell activity
.
JCI Insight
.
2023
;
8
(
1
):
e161810
.
103.
O’Donohue
MF
,
Da Costa
L
,
Lezzerini
M
, et al
.
HEATR3 variants impair nuclear import of uL18 (RPL5) and drive Diamond-Blackfan anemia
.
Blood
.
2022
;
139
(
21
):
3111
-
3126
.
104.
Jia
Q
,
Zhang
Q
,
Zhang
Z
, et al
.
Transcriptome analysis of the zebrafish model of Diamond-Blackfan anemia from RPS19 deficiency via p53-dependent and -independent pathways
.
PLoS One
.
2013
;
8
(
8
):
e71782
.
105.
Giménez
Y
,
Palacios
M
,
Sánchez-Domínguez
R
, et al
.
Lentivirus-mediated gene therapy corrects ribosomal biogenesis and shows promise for Diamond Blackfan anemia
.
JCI Insight
.
2024
;
9
(
10
):
e171650
.
106.
Payne
EM
,
Virgilio
M
,
Narla
A
, et al
.
L-leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway
.
Blood
.
2012
;
120
(
11
):
2214
-
2224
.
107.
Kimball
SR
,
Shantz
LM
,
Horetsky
RL
,
Jefferson
LS
.
Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6
.
J Biol Chem
.
1999
;
274
(
17
):
11647
-
11652
.
108.
Narla
A
,
Payne
EM
,
Abayasekara
N
, et al
.
L-Leucine improves the anaemia in models of Diamond Blackfan anaemia and the 5q- syndrome in a TP53-independent way
.
Br J Haematol
.
2014
;
167
(
4
):
524
-
528
.
109.
Jaako
P
,
Debnath
S
,
Olsson
K
,
Bryder
D
,
Flygare
J
,
Karlsson
S
.
Dietary L-leucine improves the anemia in a mouse model for Diamond-Blackfan anemia
.
Blood
.
2012
;
120
(
11
):
2225
-
2228
.
110.
Vlachos
A
,
Atsidaftos
E
,
Lababidi
ML
, et al
.
L-leucine improves anemia and growth in patients with transfusion-dependent Diamond-Blackfan anemia: results from a multicenter pilot phase I/II study from the Diamond-Blackfan Anemia Registry
.
Pediatr Blood Cancer
.
2020
;
67
(
12
):
e28748
.
111.
Dror
Y
,
Freedman
MH
.
Shwachman-Diamond syndrome
.
Br J Haematol
.
2002
;
118
(
3
):
701
-
713
.
112.
Boocock
GRB
,
Morrison
JA
,
Popovic
M
, et al
.
Mutations in SBDS are associated with Shwachman-Diamond syndrome
.
Nat Genet
.
2003
;
33
(
1
):
97
-
101
.
113.
Woloszynek
JR
,
Rothbaum
RJ
,
Rawls
AS
, et al
.
Mutations of the SBDS gene are present in most patients with Shwachman-Diamond syndrome
.
Blood
.
2004
;
104
(
12
):
3588
-
3590
.
114.
Menne
TF
,
Goyenechea
B
,
Sánchez-Puig
N
, et al
.
The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast
.
Nat Genet
.
2007
;
39
(
4
):
486
-
495
.
115.
Finch
AJ
,
Hilcenko
C
,
Basse
N
, et al
.
Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome
.
Genes Dev
.
2011
;
25
(
9
):
917
-
929
.
116.
Stepensky
P
,
Chacón-Flores
M
,
Kim
KH
, et al
.
Mutations in EFL1, an SBDS partner, are associated with infantile pancytopenia, exocrine pancreatic insufficiency and skeletal anomalies in a Shwachman-Diamond like syndrome
.
J Med Genet
.
2017
;
54
(
8
):
558
-
566
.
117.
Senger
B
,
Lafontaine
DLJ
,
Graindorge
JS
, et al
.
The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis
.
Mol Cell
.
2001
;
8
(
6
):
1363
-
1373
.
118.
Schürch
C
,
Schaefer
T
,
Müller
JS
, et al
.
SRP54 mutations induce congenital neutropenia via dominant-negative effects on XBP1 splicing
.
Blood
.
2021
;
137
(
10
):
1340
-
1352
.
119.
Robertson
N
,
Shchepachev
V
,
Wright
D
, et al
.
A disease-linked lncRNA mutation in RNase MRP inhibits ribosome synthesis
.
Nat Commun
.
2022
;
13
(
1
):
649
.
120.
Williams
MS
,
Ettinger
RS
,
Hermanns
P
, et al
.
The natural history of severe anemia in cartilage-hair hypoplasia
.
Am J Med Genet A
.
2005
;
138
(
1
):
35
-
40
.
121.
Mäkitie
O
,
Rajantie
J
,
Kaitila
I
.
Anaemia and macrocytosis—unrecognized features in cartilage-hair hypoplasia
.
Acta Paediatr
.
1992
;
81
(
12
):
1026
-
1029
.
122.
Skokowa
J
,
Dale
DC
,
Touw
IP
,
Zeidler
C
,
Welte
K
.
Severe congenital neutropenias
.
Nat Rev Dis Primers
.
2017
;
3
:
17032
.
123.
Sigurdsson
V
,
Takei
H
,
Soboleva
S
, et al
.
Bile acids protect expanding hematopoietic stem cells from unfolded protein stress in fetal liver
.
Cell Stem Cell
.
2016
;
18
(
4
):
522
-
532
.
124.
Chen
MZ
,
Moily
NS
,
Bridgford
JL
, et al
.
A thiol probe for measuring unfolded protein load and proteostasis in cells
.
Nat Commun
.
2017
;
8
(
1
):
474
.
125.
Mehta
PA
,
Ebens
C
. Fanconi Anemia. [updated 2021 Jun 3]. In:
Adam
MP
,
Feldman
J
,
Mirzaa
GM
,
Pagon
RA
,
Wallace
SE
,
Amemiya
A
, eds.
GeneReviews [Internet]
.
Seattle (WA)
:
University of Washington, Seattle
;
2002 Feb 14
:
1993
-
2025
.
126.
Domenech
C
,
Maillard
L
,
Rousseau
A
, et al
.
Studies in an early development window unveils a severe HSC defect in both murine and human Fanconi anemia
.
Stem Cell Rep
.
2018
;
11
(
5
):
1075
-
1091
.
127.
Kamimae-Lanning
AN
,
Goloviznina
NA
,
Kurre
P
.
Fetal origins of hematopoietic failure in a murine model of Fanconi anemia
.
Blood
.
2013
;
121
(
11
):
2008
-
2012
.
128.
Haneline
BLS
,
Gobbett
TA
,
Carreau
M
, et al
.
Loss of FancC function results in decreased hematopoietic
.
Stem Cell Repopulating Ability
.
1999
;
94
(
1
):
1
-
8
.
129.
Carreau
M
,
Gan
OI
,
Liu
L
,
Doedens
M
,
Dick
JE
,
Buchwald
M
.
Hematopoietic compartment of Fanconi anemia group C null mice contains fewer lineage-negative CD34+ primitive hematopoietic cells and shows reduced reconstitution ability
.
Exp Hematol
.
1999
;
27
(
11
):
1667
-
1674
.
130.
Zhang
QS
,
Marquez-Loza
L
,
Eaton
L
, et al
.
Fancd2-/- mice have hematopoietic defects that can be partially corrected by resveratrol
.
Blood
.
2010
;
116
(
24
):
5140
-
5148
.
131.
Suzuki
S
,
Racine
RR
,
Manalo
NA
,
Cantor
SB
,
Raffel
GD
.
Impairment of fetal hematopoietic stem cell function in the absence of Fancd2
.
Exp Hematol
.
2017
;
48
:
79
-
86
.
132.
Vasanthakumar
A
,
Arnovitz
S
,
Marquez
R
, et al
.
Brca1 deficiency causes bone marrow failure and spontaneous hematologic malignancies in mice
.
Blood
.
2015
;
126
(
23
):
295
. 295.
133.
Mgbemena
VE
,
Signer
RAJ
,
Wijayatunge
R
,
Laxson
T
,
Morrison
SJ
,
Ross
TS
.
Distinct Brca1 mutations differentially reduce hematopoietic stem cell function
.
Cell Rep
.
2017
;
18
(
4
):
947
-
960
.
134.
Ceccaldi
R
,
Parmar
K
,
Mouly
E
, et al
.
Bone marrow failure in fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells
.
Cell Stem Cell
.
2012
;
11
(
1
):
36
-
49
.
135.
Zhang
H
,
Kozono
DE
,
O’Connor
KW
, et al
.
TGF-β inhibition rescues hematopoietic stem cell defects and bone marrow failure in Fanconi anemia
.
Cell Stem Cell
.
2016
;
18
(
5
):
668
-
681
.
136.
Rodríguez
A
,
Zhang
K
,
Färkkilä
A
, et al
.
MYC promotes bone marrow stem cell dysfunction in Fanconi anemia
.
Cell Stem Cell
.
2021
;
28
(
1
):
33
-
47.e8
.
137.
Laurenti
E
,
Varnum-Finney
B
,
Wilson
A
, et al
.
Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity
.
Cell Stem Cell
.
2008
;
3
(
6
):
611
-
624
.
138.
Cunningham
L
,
Merguerian
M
,
Calvo
KR
, et al
.
Natural history study of patients with familial platelet disorder with associated myeloid malignancy
.
Blood
.
2023
;
142
(
25
):
2146
-
2158
.
139.
Narla
A
,
Vlachos
A
,
Nathan
DG
.
Diamond Blackfan anemia treatment: past, present, and future
.
Semin Hematol
.
2011
;
48
(
2
):
117
-
123
.
140.
Gutierrez-Rodrigues
F
,
Sahoo
SS
,
Wlodarski
MW
,
Young
NS
.
Somatic mosaicism in inherited bone marrow failure syndromes
.
Best Pract Res Clin Haematol
.
2021
;
34
(
2
):
101279
.
141.
Alter
BP
,
Giri
N
,
Savage
SA
,
Rosenberg
PS
.
Cancer in the national cancer institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up
.
Haematologica
.
2018
;
103
(
1
):
30
-
39
.
142.
Alter
BP
,
Giri
N
,
Savage
SA
, et al
.
Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study
.
Br J Haematol
.
2010
;
150
(
2
):
179
-
188
.
143.
Savage
SA
,
Dufour
C
.
Classical inherited bone marrow failure syndromes with high risk for myelodysplastic syndrome and acute myelogenous leukemia
.
Semin Hematol
.
2017
;
54
(
2
):
105
-
114
.
144.
Attardi
E
,
Corey
SJ
,
Wlodarski
MW
.
Clonal hematopoiesis in children with predisposing conditions
.
Semin Hematol
.
2024
;
61
(
1
):
35
-
42
.
145.
Pasca
S
,
Gondek
LP
.
Clonal hematopoiesis and bone marrow failure syndromes
.
Best Pract Res Clin Haematol
.
2021
;
34
(
2
):
101273
.
146.
Farrar
JE
,
Vlachos
A
,
Atsidaftos
E
, et al
.
Ribosomal protein gene deletions in Diamond-Blackfan anemia
.
Blood
.
2011
;
118
(
26
):
6943
-
6951
.
147.
Garelli
E
,
Quarello
P
,
Giorgio
E
, et al
.
Spontaneous remission in a Diamond-Blackfan anaemia patient due to a revertant uniparental disomy ablating a de novo RPS19 mutation
.
Br J Haematol
.
2019
;
185
(
5
):
994
-
998
.
148.
Venugopal
P
,
Moore
S
,
Lawrence
DM
, et al
.
Self-reverting mutations partially correct the blood phenotype in a Diamond Blackfan anemia patient
.
Haematologica
.
2017
;
102
(
12
):
e506
-
e509
.
149.
Arbiv
OA
,
Cuvelier
G
,
Klaassen
RJ
, et al
.
Molecular analysis and genotype-phenotype correlation of Diamond-Blackfan anemia
.
Clin Genet
.
2018
;
93
(
2
):
320
-
328
.
150.
Cole
S
,
Giri
N
,
Alter
BP
,
Gianferante
DM
.
Variable clinical features in a large family with Diamond Blackfan anemia caused by a pathogenic missense mutation in RPS19
.
Front Genet
.
2022
;
13
:
914141
.
151.
Gianferante
DM
,
Wlodarski
MW
,
Atsidaftos
E
, et al
.
Genotype-phenotype association and variant characterization in Diamond Blackfan anemia caused by pathogenic variants in RPL35A
.
Haematologica
.
2021
;
106
(
5
):
1303
-
1310
.
152.
Tan
S
,
Kermasson
L
,
Hilcenko
C
, et al
.
Somatic genetic rescue of a germline ribosome assembly defect [published correction appears in Nat Commun. 2022;13(1):3574]
.
Nat Commun
.
2021
;
12
(
1
):
5044
.
153.
Kennedy
AL
,
Myers
KC
,
Bowman
J
, et al
.
Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome
.
Nat Commun
.
2021
;
12
(
1
):
1334
.
154.
Machado
HE
,
Øbro
NF
,
Williams
N
, et al
.
Convergent somatic evolution commences in utero in a germline ribosomopathy
.
Nat Commun
.
2023
;
14
(
1
):
5092
.
155.
Quentin
S
,
Cuccuini
W
,
Ceccaldi
R
, et al
.
Myelodysplasia and leukemia of fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions
.
Blood
.
2011
;
117
(
15
):
e161
-
e170
.
156.
Skokowa
J
,
Steinemann
D
,
Katsman-Kuipers
JE
, et al
.
Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis
.
Blood
.
2014
;
123
(
14
):
2229
-
2237
.
157.
Sin
CF
,
Man
PHM
.
The role of proteasome inhibitors in treating acute lymphoblastic leukaemia
.
Front Oncol
.
2021
;
11
:
802832
.
158.
Khateb
A
,
Ronai
ZA
.
Unfolded protein response in leukemia: from basic understanding to therapeutic opportunities
.
Trends Cancer
.
2020
;
6
(
11
):
960
-
973
.
159.
Martelli
AM
,
Paganelli
F
,
Chiarini
F
,
Evangelisti
C
,
McCubrey
JA
.
The unfolded protein response: a novel therapeutic target in acute leukemias
.
Cancers (Basel)
.
2020
;
12
(
2
):
333
.
160.
Lam
K
,
Kim
YJ
,
Ong
CM
, et al
.
The proteostasis network is a therapeutic target in acute myeloid leukemia
.
bioRxiv
.
Preprint posted online 26 September 2024
.
161.
Leclerc
GM
,
Zheng
S
,
Leclerc
GJ
,
DeSalvo
J
,
Swords
RT
,
Barredo
JC
.
The NEDD8-activating enzyme inhibitor pevonedistat activates the eIF2α and mTOR pathways inducing UPR-mediated cell death in acute lymphoblastic leukemia
.
Leuk Res
.
2016
;
50
:
1
-
10
.
162.
Lawson
H
,
Holt-Martyn
JP
,
Dembitz
V
, et al
.
The selective prolyl hydroxylase inhibitor IOX5 stabilizes HIF-1α and compromises development and progression of acute myeloid leukemia
.
Nat Cancer
.
2024
;
5
(
6
):
916
-
937
.
163.
Sjövall
D
,
Ghosh
S
,
Fernandez-Fuentes
N
, et al
.
Defective ribosome assembly impairs leukemia progression in a murine model of acute myeloid leukemia
.
Cell Rep
.
2024
;
43
(
11
):
114864
.
164.
Liu
B
,
Zhang
X
,
Zhou
Y
, et al
.
USP4 regulates ribosome biogenesis and protein synthesis for hematopoietic stem cell regeneration and leukemia progression
.
Leukemia
.
2024
;
38
(
11
):
2466
-
2478
.
165.
Gausdal
G
,
Gjertsen
BT
,
McCormack
E
, et al
.
Abolition of stress-induced protein synthesis sensitizes leukemia cells to anthracycline-induced death
.
Blood
.
2008
;
111
(
5
):
2866
-
2877
.
166.
Mill
CP
,
Fiskus
W
,
DiNardo
CD
, et al
.
Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2
.
Blood
.
2022
;
139
(
6
):
907
-
921
.
167.
Tang
R
,
Faussat
AM
,
Majdak
P
, et al
.
Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells
.
Mol Cancer Ther
.
2006
;
5
(
3
):
723
-
731
.
168.
Tamburini
J
,
Green
AS
,
Bardet
V
, et al
.
Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia
.
Blood
.
2009
;
114
(
8
):
1618
-
1627
.
169.
Cowan
AJ
,
Green
DJ
,
Kwok
M
, et al
.
Diagnosis and management of multiple myeloma: a review
.
JAMA
.
2022
;
327
(
5
):
464
-
477
.
170.
Barna
M
,
Pusic
A
,
Zollo
O
, et al
.
Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency
.
Nature
.
2008
;
456
(
7224
):
971
-
975
.
171.
Barton
BM
,
Son
F
,
Verma
A
, et al
.
IRE1α – XBP1 safeguards hematopoietic stem and progenitor cells by restricting pro-leukemogenic gene programs
.
Nat Immunol
.
2025
;
26
(
2
):
200
-
214
.
172.
Dong
Q
,
Xiu
Y
,
Wang
Y
, et al
.
HSF1 is a driver of leukemia stem cell self-renewal in acute myeloid leukemia
.
Nat Commun
.
2022
;
13
(
1
):
6107
.
173.
Dai
C
.
The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis
.
Phil Trans R Soc B
.
2018
;
373
(
1738
):
20160525
.
174.
Santagata
S
,
Mendillo
ML
,
Tang
YC
, et al
.
Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state
.
Science
.
2013
;
341
(
6143
):
1238303
.
175.
Nishida
Y
,
Zhao
R
,
Heese
LE
, et al
.
Inhibition of translation initiation factor eIF4a inactivates heat shock factor 1 (HSF1) and exerts anti-leukemia activity in AML
.
Leukemia
.
2021
;
35
(
9
):
2469
-
2481
.
176.
Eroglu
B
,
Pang
J
,
Jin
X
,
Xi
C
,
Moskophidis
D
,
Mivechi
NF
.
HSF1-mediated control of cellular energy metabolism and mTORC1 activation drive acute T-cell lymphoblastic leukemia progression
.
Mol Cancer Res
.
2020
;
18
(
3
):
463
-
476
.
177.
Grey
W
,
Rio-Machin
A
,
Casado
P
, et al
.
CKS1 inhibition depletes leukemic stem cells and protects healthy hematopoietic stem cells in acute myeloid leukemia
.
Sci Transl Med
.
2022
;
14
(
650
):
eabn3248
.
178.
Hidalgo San Jose
L
,
Signer
RAJ
.
Cell-type-specific quantification of protein synthesis in vivo
.
Nat Protoc
.
2019
;
14
(
2
):
441
-
460
.
179.
Liu
J
,
Xu
Y
,
Stoleru
D
,
Salic
A
.
Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
2
):
413
-
418
.
180.
Taylor
AM
,
Macari
ER
,
Chan
IT
, et al
.
Calmodulin inhibitors improve erythropoiesis in Diamond-Blackfan anemia
.
Sci Transl Med
.
2020
;
12
(
566
):
eabb5831
.
181.
Park
SG
,
Schimmel
P
,
Kim
S
.
Aminoacyl tRNA synthetases and their connections to disease
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
32
):
11043
-
11049
.
182.
Wilson
A
,
Murphy
MJ
,
Oskarsson
T
, et al
.
c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation
.
Genes Dev
.
2004
;
18
(
22
):
2747
-
2763
.
You do not currently have access to this content.
Sign in via your Institution