• mtDAMPs act as first hits in murine TRALI.

  • mtDNA stimulate recipient TLR9, and this is a first hit of antibody-mediated TRALI development.

Abstract

Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-related mortality. Though the precise mechanism is not fully understood, a 2-hit model is widely accepted, involving both a predisposing patient condition and the transfusion itself. Mitochondrial damage-associated molecular patterns (mtDAMPs), such as mitochondrial DNA (mtDNA) and N-formylated peptides (NFPs), are elevated in patients who have experienced trauma, and stored blood products, and have been implicated in adverse transfusion outcomes, prompting us to investigate whether mtDAMPs could serve as a priming “first hit” in TRALI. Using a murine model, we found that injection of purified mitochondria followed by a monoclonal anti–major histocompatibility complex class I antibody (34-1-2s) induced significantly greater lung injury compared with the isotype control. This was evidenced by increased pulmonary edema, elevated plasma macrophage inflammatory protein 2, enhanced neutrophil lung infiltration, hypothermia, and respiratory distress. Similar effects were observed using a Toll-like receptor 9 (TLR9) agonist (oligonucleotide 2395), purified mtDNA, and a synthetic NFP (WKYMVm), agonist of formyl peptide receptor (FPR). Notably, a TLR9 antagonist blocked the mtDAMP-induced TRALI response, whereas 2 FPR antagonists did not, underscoring a key role for mtDNA and TLR9 signaling in disease priming. These findings suggest that mtDAMPs, particularly mtDNA, present in both transfusion products and recipient plasma, may predispose patients to antibody-mediated TRALI. Targeting mtDAMPs or their receptors may offer a novel therapeutic strategy to mitigate TRALI risk.

1.
Tung
JP
,
Chiaretti
S
,
Dean
MM
,
Sultana
AJ
,
Reade
MC
,
Fung
YL
.
Transfusion-related acute lung injury (TRALI): potential pathways of development, strategies for prevention and treatment, and future research directions
.
Blood Rev
.
2022
;
53
:
100926
.
2.
Yu
Y
,
Lian
Z
.
Update on transfusion-related acute lung injury: an overview of its pathogenesis and management
.
Front Immunol
.
2023
;
14
:
1175387
.
3.
Peters
AL
,
van Hezel
ME
,
Juffermans
NP
,
Vlaar
AP
.
Pathogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside
.
Blood Rev
.
2015
;
29
(
1
):
51
-
61
.
4.
McVey
MJ
,
Weidenfeld
S
,
Maishan
M
, et al
.
Platelet extracellular vesicles mediate transfusion-related acute lung injury by imbalancing the sphingolipid rheostat
.
Blood
.
2021
;
137
(
5
):
690
-
701
.
5.
Semple
JW
,
Rebetz
J
,
Kapur
R
.
Transfusion-associated circulatory overload and transfusion-related acute lung injury
.
Blood
.
2019
;
133
(
17
):
1840
-
1853
.
6.
Silliman
CC
.
The two-event model of transfusion-related acute lung injury
.
Crit Care Med
.
2006
;
34
(
suppl 5
):
S124
-
S131
.
7.
Looney
MR
,
Su
X
,
Van Ziffle
JA
,
Lowell
CA
,
Matthay
MA
.
Neutrophils and their Fc gamma receptors are essential in a mouse model of transfusion-related acute lung injury
.
J Clin Invest
.
2006
;
116
(
6
):
1615
-
1623
.
8.
Looney
MR
,
Nguyen
JX
,
Hu
Y
,
Van Ziffle
JA
,
Lowell
CA
,
Matthay
MA
.
Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury
.
J Clin Invest
.
2009
;
119
(
11
):
3450
-
3461
.
9.
Kapur
R
,
Kim
M
,
Aslam
R
, et al
.
T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10
.
Blood
.
2017
;
129
(
18
):
2557
-
2569
.
10.
Kapur
R
,
Kim
M
,
Shanmugabhavananthan
S
,
Liu
J
,
Li
Y
,
Semple
JW
.
C-reactive protein enhances murine antibody-mediated transfusion-related acute lung injury
.
Blood
.
2015
;
126
(
25
):
2747
-
2751
.
11.
Guo
K
,
Ma
S
.
The immune system in transfusion-related acute lung injury prevention and therapy: update and perspective
.
Front Mol Biosci
.
2021
;
8
:
639976
.
12.
Matzinger
P
.
Tolerance, danger, and the extended family
.
Annu Rev Immunol
.
1994
;
12
:
991
-
1045
.
13.
Zhang
Q
,
Raoof
M
,
Chen
Y
, et al
.
Circulating mitochondrial DAMPs cause inflammatory responses to injury
.
Nature
.
2010
;
464
(
7285
):
104
-
107
.
14.
Krysko
DV
,
Agostinis
P
,
Krysko
O
, et al
.
Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation
.
Trends Immunol
.
2011
;
32
(
4
):
157
-
164
.
15.
Boudreau
LH
,
Duchez
AC
,
Cloutier
N
, et al
.
Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation
.
Blood
.
2014
;
124
(
14
):
2173
-
2183
.
16.
Marchi
S
,
Guilbaud
E
,
Tait
SWG
,
Yamazaki
T
,
Galluzzi
L
.
Mitochondrial control of inflammation
.
Nat Rev Immunol
.
2023
;
23
(
3
):
159
-
173
.
17.
Rongvaux
A
.
Innate immunity and tolerance toward mitochondria
.
Mitochondrion
.
2018
;
41
:
14
-
20
.
18.
Carp
H
.
Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils
.
J Exp Med
.
1982
;
155
(
1
):
264
-
275
.
19.
Wenceslau
CF
,
McCarthy
CG
,
Szasz
T
,
Goulopoulou
S
,
Webb
RC
.
Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome
.
Am J Physiol Heart Circ Physiol
.
2015
;
308
(
7
):
H768
-
H777
.
20.
Lee
YL
,
King
MB
,
Gonzalez
RP
, et al
.
Blood transfusion products contain mitochondrial DNA damage-associated molecular patterns: a potential effector of transfusion-related acute lung injury
.
J Surg Res
.
2014
;
191
(
2
):
286
-
289
.
21.
Marcoux
G
,
Duchez
AC
,
Rousseau
M
, et al
.
Microparticle and mitochondrial release during extended storage of different types of platelet concentrates
.
Platelets
.
2017
;
28
(
3
):
272
-
280
.
22.
Marcoux
G
,
Magron
A
,
Sut
C
, et al
.
Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions
.
Transfusion
.
2019
;
59
(
7
):
2403
-
2414
.
23.
Kim
SD
,
Kwon
S
,
Lee
SK
, et al
.
The immune-stimulating peptide WKYMVm has therapeutic effects against ulcerative colitis
.
Exp Mol Med
.
2013
;
45
(
9
):
e40
.
24.
Schindelin
J
,
Arganda-Carreras
I
,
Frise
E
, et al
.
Fiji: an open-source platform for biological-image analysis
.
Nat Methods
.
2012
;
9
(
7
):
676
-
682
.
25.
Kapur
R
,
Kasetty
G
,
Rebetz
J
,
Egesten
A
,
Semple
JW
.
Osteopontin mediates murine transfusion-related acute lung injury via stimulation of pulmonary neutrophil accumulation
.
Blood
.
2019
;
134
(
1
):
74
-
84
.
26.
Becker
Y
,
Loignon
RC
,
Julien
AS
, et al
.
Anti-mitochondrial autoantibodies in systemic lupus erythematosus and their association with disease manifestations
.
Sci Rep
.
2019
;
9
(
1
):
4530
.
27.
Zhang
Q
,
Itagaki
K
,
Hauser
CJ
.
Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase
.
Shock
.
2010
;
34
(
1
):
55
-
59
.
28.
Sun
S
,
Sursal
T
,
Adibnia
Y
, et al
.
Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways
.
PLoS One
.
2013
;
8
(
3
):
e59989
.
29.
Toy
P
,
Gajic
O
,
Bacchetti
P
, et al
.
Transfusion-related acute lung injury: incidence and risk factors
.
Blood
.
2012
;
119
(
7
):
1757
-
1767
.
30.
McKenzie
CG
,
Kim
M
,
Singh
TK
,
Milev
Y
,
Freedman
J
,
Semple
JW
.
Peripheral blood monocyte-derived chemokine blockade prevents murine transfusion-related acute lung injury (TRALI)
.
Blood
.
2014
;
123
(
22
):
3496
-
3503
.
31.
Wiklander
OP
,
Nordin
JZ
,
O’Loughlin
A
, et al
.
Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting
.
J Extracell Vesicles
.
2015
;
4
:
26316
.
32.
Strait
RT
,
Hicks
W
,
Barasa
N
, et al
.
MHC class I-specific antibody binding to nonhematopoietic cells drives complement activation to induce transfusion-related acute lung injury in mice
.
J Exp Med
.
2011
;
208
(
12
):
2525
-
2544
.
33.
Zhao
C
,
Itagaki
K
,
Gupta
A
,
Odom
S
,
Sandler
N
,
Hauser
CJ
.
Mitochondrial damage-associated molecular patterns released by abdominal trauma suppress pulmonary immune responses
.
J Trauma Acute Care Surg
.
2014
;
76
(
5
):
1222
-
1227
.
34.
Bux
J
,
Sachs
UJ
.
The pathogenesis of transfusion-related acute lung injury (TRALI)
.
Br J Haematol
.
2007
;
136
(
6
):
788
-
799
.
35.
Sachs
UJ
.
A threshold model for the susceptibility to transfusion-related acute lung injury
.
Transfus Clin Biol
.
2012
;
19
(
3
):
109
-
116
.
36.
Looney
MR
,
Gropper
MA
,
Matthay
MA
.
Transfusion-related acute lung injury: a review
.
Chest
.
2004
;
126
(
1
):
249
-
258
.
37.
Czapiga
M
,
Gao
JL
,
Kirk
A
,
Lekstrom-Himes
J
.
Human platelets exhibit chemotaxis using functional N-formyl peptide receptors
.
Exp Hematol
.
2005
;
33
(
1
):
73
-
84
.
38.
Aslam
R
,
Speck
ER
,
Kim
M
, et al
.
Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo
.
Blood
.
2006
;
107
(
2
):
637
-
641
.
39.
Tzanela
M
,
Orfanos
S
,
McCormick
JR
.
Endotoxin augments hemodynamic and metabolic effects of formyl-methionyl-leucyl-phenylalanine (FMLP) in rabbits
.
In Vivo
.
2007
;
21
(
1
):
81
-
87
.
40.
Johansson
K
,
Maouia
A
,
Rebetz
J
, et al
.
CpG oligonucleotides induce acute murine thrombocytopenia dependent on Toll-like receptor 9 and spleen tyrosine kinase pathways
.
J Thromb Haemost
.
2024
;
22
(
11
):
3266
-
3276
.
41.
John
P
,
Whatley
FR
.
Paracoccus denitrificans and the evolutionary origin of the mitochondrion
.
Nature
.
1975
;
254
(
5500
):
495
-
498
.
42.
Shao
G
,
Julian
MW
,
Bao
S
, et al
.
Formyl peptide receptor ligands promote wound closure in lung epithelial cells
.
Am J Respir Cell Mol Biol
.
2011
;
44
(
3
):
264
-
269
.
43.
Gao
JL
,
Chen
H
,
Filie
JD
,
Kozak
CA
,
Murphy
PM
.
Differential expansion of the N-formylpeptide receptor gene cluster in human and mouse
.
Genomics
.
1998
;
51
(
2
):
270
-
276
.
44.
He
HQ
,
Ye
RD
.
The formyl peptide receptors: diversity of ligands and mechanism for recognition
.
Molecules
.
2017
;
22
(
3
):
455
.
45.
Southgate
EL
,
He
RL
,
Gao
JL
,
Murphy
PM
,
Nanamori
M
,
Ye
RD
.
Identification of formyl peptides from Listeria monocytogenes and Staphylococcus aureus as potent chemoattractants for mouse neutrophils
.
J Immunol
.
2008
;
181
(
2
):
1429
-
1437
.
46.
Dorward
DA
,
Lucas
CD
,
Doherty
MK
, et al
.
Novel role for endogenous mitochondrial formylated peptide-driven formyl peptide receptor 1 signalling in acute respiratory distress syndrome
.
Thorax
.
2017
;
72
(
10
):
928
-
936
.
47.
Wenceslau
CF
,
Szasz
T
,
McCarthy
CG
,
Baban
B
,
NeSmith
E
,
Webb
RC
.
Mitochondrial N-formyl peptides cause airway contraction and lung neutrophil infiltration via formyl peptide receptor activation
.
Pulm Pharmacol Ther
.
2016
;
37
:
49
-
56
.
48.
Hauser
CJ
,
Sursal
T
,
Rodriguez
EK
,
Appleton
PT
,
Zhang
Q
,
Itagaki
K
.
Mitochondrial damage associated molecular patterns from femoral reamings activate neutrophils through formyl peptide receptors and P44/42 MAP kinase
.
J Orthop Trauma
.
2010
;
24
(
9
):
534
-
538
.
49.
Crouser
ED
,
Shao
G
,
Julian
MW
, et al
.
Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors
.
Crit Care Med
.
2009
;
37
(
6
):
2000
-
2009
.
50.
Zhang
X
,
Wang
T
,
Yuan
ZC
, et al
.
Mitochondrial peptides cause proinflammatory responses in the alveolar epithelium via FPR-1, MAPKs, and AKT: a potential mechanism involved in acute lung injury
.
Am J Physiol Lung Cell Mol Physiol
.
2018
;
315
(
5
):
L775
-
L786
.
51.
Yuan
ZC
,
Zeng
N
,
Liu
L
, et al
.
Mitochondrial damage-associated molecular patterns exacerbate lung fluid imbalance via the formyl peptide receptor-1 signaling pathway in acute lung injury
.
Crit Care Med
.
2021
;
49
(
1
):
e53
-
e62
.
52.
Forsman
H
,
Wu
Y
,
Mårtensson
J
, et al
.
AZ2158 is a more potent formyl peptide receptor 1 inhibitor than the commonly used peptide antagonists in abolishing neutrophil chemotaxis
.
Biochem Pharmacol
.
2023
;
211
:
115529
.
53.
Yang
SC
,
Chang
SH
,
Hsieh
PW
, et al
.
Dipeptide HCH6-1 inhibits neutrophil activation and protects against acute lung injury by blocking FPR1
.
Free Radic Biol Med
.
2017
;
106
:
254
-
269
.
54.
Zhuang
Y
,
Wang
L
,
Guo
J
, et al
.
Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2
.
Nat Commun
.
2022
;
13
(
1
):
1054
.
55.
Dahlgren
C
,
Gabl
M
,
Holdfeldt
A
,
Winther
M
,
Forsman
H
.
Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria
.
Biochem Pharmacol
.
2016
;
114
:
22
-
39
.
56.
Stein
CA
,
Subasinghe
C
,
Shinozuka
K
,
Cohen
JS
.
Physicochemical properties of phosphorothioate oligodeoxynucleotides
.
Nucleic Acids Res
.
1988
;
16
(
8
):
3209
-
3221
.
57.
Xian
H
,
Karin
M
.
Oxidized mitochondrial DNA: a protective signal gone awry
.
Trends Immunol
.
2023
;
44
(
3
):
188
-
200
.
58.
Oka
T
,
Hikoso
S
,
Yamaguchi
O
, et al
.
Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure
.
Nature
.
2012
;
485
(
7397
):
251
-
255
.
59.
Hazeldine
J
,
Hampson
P
,
Opoku
FA
,
Foster
M
,
Lord
JM
.
N-Formyl peptides drive mitochondrial damage associated molecular pattern induced neutrophil activation through ERK1/2 and P38 MAP kinase signalling pathways
.
Injury
.
2015
;
46
(
6
):
975
-
984
.
You do not currently have access to this content.
Sign in via your Institution