• Antioxidant activity of Cx43 depends on its autonomous activity in mitochondria of HSCs and MPPs.

  • Cx43 activity depends on hemichannels that control mitochondrial Ca2+, α-ketoglutarate dehydrogenase, and electron transfer chain activity.

Abstract

Hematopoietic stem cells (HSCs) exhibit a distinctive antioxidant profile during steady-state and stress hematopoiesis. HSCs and multipotential progenitors (MPPs) are metabolically coupled to bone marrow mesenchymal stromal cells through mitochondrial transfer, a process dependent on hematopoietic connexin 43 (Cx43) and low adenosine monophosphate–activated protein kinase (AMPK) activity. However, the mechanism by which Cx43 preserves mitochondrial functionality in HSCs remains elusive. Here, through integrated transcriptomic, proteomic, metabolomic, phenotypic, and functional analyses of HSCs and their isolated mitochondria, we identified that Cx43 is present on the inner and outer mitochondrial membranes of HSCs/MPPs, in which it primarily regulates mitochondrial metabolism and adenosine triphosphate synthesis by preserving the mitochondrial cristae, activation of mitochondrial AMPK, and 2-oxoglutarate dehydrogenase, a rate-liming enzyme in tricarboxylic acid cycle and electron transfer chain. During replicative stress, Cx43-deficient HSCs/MPPs fail to adapt metabolically and accumulate mitochondrial Ca2+, leading to increased mitochondrial AMPK activity, mitochondrial fission, mitophagy, and production of reactive oxygen species, thereby limiting HSC/MPP regeneration potential. Disruption of hyperfragmentation of mitochondria and mitophagy by Drp1 dominant-negative mutant (Drp1K38A) or restoration of mitochondrial function through ex vivo heteroplasmy prevents the harmful effects of Cx43 deficiency on mitochondrial metabolism and restore HSC activity in serial transplantation experiments. Re-expression analysis of Cx43 structure-function mutants indicates that Cx43 hemichannels are sufficient to reset HSC mitochondrial metabolism, dynamics, Ca2+ levels, and regeneration capacity. This report defines the cell-autonomous mechanism of action behind the role of Cx43 in HSC activity and opens a venue to translational applications in transplantation.

1.
Crippa
S
,
Santi
L
,
Bosotti
R
,
Porro
G
,
Bernardo
ME
.
Bone marrow-derived mesenchymal stromal cells: a novel target to optimize hematopoietic stem cell transplantation protocols in hematological malignancies and rare genetic disorders
.
J Clin Med
.
2019
;
9
(
1
):
2
.
2.
Walter
D
,
Lier
A
,
Geiselhart
A
, et al
.
Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells
.
Nature
.
2015
;
520
(
7548
):
549
-
552
.
3.
Hardouin
G
,
Magrin
E
,
Corsia
A
,
Cavazzana
M
,
Miccio
A
,
Semeraro
M
.
Sickle cell disease: from genetics to curative approaches
.
Annu Rev Genomics Hum Genet
.
2023
;
24
:
255
-
275
.
4.
Kumar
NM
,
Gilula
NB
.
The gap junction communication channel
.
Cell
.
1996
;
84
(
3
):
381
-
388
.
5.
Brissette
JL
,
Kumar
NM
,
Gilula
NB
,
Dotto
GP
.
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate and the ras oncogene modulate expression and phosphorylation of gap junction proteins
.
Mol Cell Biol
.
1991
;
11
(
10
):
5364
-
5371
.
6.
Unger
VM
,
Kumar
NM
,
Gilula
NB
,
Yeager
M
.
Three-dimensional structure of a recombinant gap junction membrane channel
.
Science
.
1999
;
283
(
5405
):
1176
-
1180
.
7.
Elias
LA
,
Wang
DD
,
Kriegstein
AR
.
Gap junction adhesion is necessary for radial migration in the neocortex
.
Nature
.
2007
;
448
(
7156
):
901
-
907
.
8.
Ribeiro-Rodrigues
TM
,
Martins-Marques
T
,
Morel
S
,
Kwak
BR
,
Girão
H
.
Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes
.
J Cell Sci
.
2017
;
130
(
21
):
3619
-
3630
.
9.
Kotini
M
,
Barriga
EH
,
Leslie
J
, et al
.
Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo
.
Nat Commun
.
2018
;
9
(
1
):
3846
.
10.
Boengler
K
,
Leybaert
L
,
Ruiz-Meana
M
,
Schulz
R
.
Connexin 43 in mitochondria: what do we really know about its function?
.
Front Physiol
.
2022
;
13
:
928934
.
11.
Ito
K
,
Hirao
A
,
Arai
F
, et al
.
Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells
.
Nat Med
.
2006
;
12
(
4
):
446
-
451
.
12.
Ludin
A
,
Gur-Cohen
S
,
Golan
K
, et al
.
Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment
.
Antioxid Redox Signal
.
2014
;
21
(
11
):
1605
-
1619
.
13.
Itkin
T
,
Gur-Cohen
S
,
Spencer
JA
, et al
.
Distinct bone marrow blood vessels differentially regulate haematopoiesis
.
Nature
.
2016
;
532
(
7599
):
323
-
328
.
14.
Ito
K
,
Hirao
A
,
Arai
F
, et al
.
Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells
.
Nature
.
2004
;
431
(
7011
):
997
-
1002
.
15.
Golan
K
,
Singh
AK
,
Kollet
O
, et al
.
Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma
.
Blood
.
2020
;
136
(
23
):
2607
-
2619
.
16.
Taniguchi Ishikawa
E
,
Gonzalez-Nieto
D
,
Ghiaur
G
, et al
.
Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
23
):
9071
-
9076
.
17.
Rosendaal
M
,
Green
CR
,
Rahman
A
,
Morgan
D
.
Up-regulation of the connexin43+ gap junction network in haemopoietic tissue before the growth of stem cells
.
J Cell Sci
.
1994
;
107
(
pt 1
):
29
-
37
.
18.
Cancelas
JA
,
Koevoet
WL
,
de Koning
AE
,
Mayen
AE
,
Rombouts
EJ
,
Ploemacher
RE
.
Connexin-43 gap junctions are involved in multiconnexin-expressing stromal support of hemopoietic progenitors and stem cells
.
Blood
.
2000
;
96
(
2
):
498
-
505
.
19.
Gonzalez-Nieto
D
,
Li
L
,
Kohler
A
, et al
.
Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors
.
Blood
.
2012
;
119
(
22
):
5144
-
5154
.
20.
Presley
CA
,
Lee
AW
,
Kastl
B
, et al
.
Bone marrow connexin-43 expression is critical for hematopoietic regeneration after chemotherapy
.
Cell Commun Adhes
.
2005
;
12
(
5-6
):
307
-
317
.
21.
Hawley
SA
,
Pan
DA
,
Mustard
KJ
, et al
.
Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase
.
Cell Metab
.
2005
;
2
(
1
):
9
-
19
.
22.
Steinberg
GR
,
Hardie
DG
.
New insights into activation and function of the AMPK
.
Nat Rev Mol Cell Biol
.
2023
;
24
(
4
):
255
-
272
.
23.
Drake
JC
,
Wilson
RJ
,
Laker
RC
, et al
.
Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
37
):
e2025932118
.
24.
Pei
S
,
Minhajuddin
M
,
Adane
B
, et al
.
AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells
.
Cell Stem Cell
.
2018
;
23
(
1
):
86
-
100.e6
.
25.
Afinanisa
Q
,
Cho
MK
,
Seong
HA
.
AMPK localization: a key to differential energy regulation
.
Int J Mol Sci
.
2021
;
22
(
20
):
10921
.
26.
Herzig
S
,
Shaw
RJ
.
AMPK: guardian of metabolism and mitochondrial homeostasis
.
Nat Rev Mol Cell Biol
.
2018
;
19
(
2
):
121
-
135
.
27.
Khacho
M
,
Clark
A
,
Svoboda
DS
, et al
.
Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program
.
Cell Stem Cell
.
2016
;
19
(
2
):
232
-
247
.
28.
Ito
K
,
Turcotte
R
,
Cui
J
, et al
.
Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance
.
Science
.
2016
;
354
(
6316
):
1156
-
1160
.
29.
Luchsinger
LL
,
de Almeida
MJ
,
Corrigan
DJ
,
Mumau
M
,
Snoeck
HW
.
Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential
.
Nature
.
2016
;
529
(
7587
):
528
-
531
.
30.
Umemoto
T
,
Hashimoto
M
,
Matsumura
T
,
Nakamura-Ishizu
A
,
Suda
T
.
Ca2+-mitochondria axis drives cell division in hematopoietic stem cells
.
J Exp Med
.
2018
;
215
(
8
):
2097
-
2113
.
31.
Hu
M
,
Zeng
H
,
Chen
S
, et al
.
SRC-3 is involved in maintaining hematopoietic stem cell quiescence by regulation of mitochondrial metabolism in mice
.
Blood
.
2018
;
132
(
9
):
911
-
923
.
32.
Hinge
A
,
He
J
,
Bartram
J
, et al
.
Asymmetrically segregated mitochondria provide cellular memory of hematopoietic stem cell replicative history and drive HSC attrition
.
Cell Stem Cell
.
2020
;
26
(
3
):
420
-
430.e6
.
33.
Jin
G
,
Xu
C
,
Zhang
X
, et al
.
Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells
.
Nat Immunol
.
2018
;
19
(
1
):
29
-
40
.
34.
Liu
X
,
Zheng
H
,
Yu
WM
,
Cooper
TM
,
Bunting
KD
,
Qu
CK
.
Maintenance of mouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism
.
Blood
.
2015
;
125
(
10
):
1562
-
1565
.
35.
Trcka
F
,
Durech
M
,
Vankova
P
, et al
.
The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14-3-3 adaptors
.
J Biol Chem
.
2020
;
295
(
27
):
8928
-
8944
.
36.
Letts
JA
,
Sazanov
LA
.
Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain
.
Nat Struct Mol Biol
.
2017
;
24
(
10
):
800
-
808
.
37.
Cheng
Y
,
Luo
H
,
Izzo
F
, et al
.
m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment
.
Cell Rep
.
2019
;
28
(
7
):
1703
-
1716.e6
.
38.
Menéndez-Gutiérrez
MP
,
Porcuna
J
,
Nayak
R
, et al
.
Retinoid X receptor promotes hematopoietic stem cell fitness and quiescence and preserves hematopoietic homeostasis
.
Blood
.
2023
;
141
(
6
):
592
-
608
.
39.
Pham
AH
,
McCaffery
JM
,
Chan
DC
.
Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics
.
Genesis
.
2012
;
50
(
11
):
833
-
843
.
40.
Toyama
EQ
,
Herzig
S
,
Courchet
J
, et al
.
Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
.
Science
.
2016
;
351
(
6270
):
275
-
281
.
41.
Garcia-Prat
L
,
Kaufmann
KB
,
Schneiter
F
, et al
.
TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate
.
Cell Stem Cell
.
2021
;
28
(
10
):
1838
-
1850.e10
.
42.
Murakami
K
,
Kurotaki
D
,
Kawase
W
, et al
.
OGT regulates hematopoietic stem cell maintenance via PINK1-dependent mitophagy
.
Cell Rep
.
2021
;
34
(
1
):
108579
.
43.
Ho
TT
,
Warr
MR
,
Adelman
ER
, et al
.
Autophagy maintains the metabolism and function of young and old stem cells
.
Nature
.
2017
;
543
(
7644
):
205
-
210
.
44.
Girotra
M
,
Chiang
YH
,
Charmoy
M
, et al
.
Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems
.
Nat Aging
.
2023
;
3
(
9
):
1057
-
1066
.
45.
Luchsinger
LL
,
Strikoudis
A
,
Danzl
NM
, et al
.
Harnessing hematopoietic stem cell low intracellular calcium improves their maintenance in vitro
.
Cell Stem Cell
.
2019
;
25
(
2
):
225
-
240.e7
.
46.
Maryanovich
M
,
Zaltsman
Y
,
Ruggiero
A
, et al
.
An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate
.
Nat Commun
.
2015
;
6
:
7901
.
47.
Cartes-Saavedra
B
,
Macuada
J
,
Lagos
D
, et al
.
OPA1 modulates mitochondrial Ca2+ uptake through ER-mitochondria coupling
.
Front Cell Dev Biol
.
2021
;
9
:
774108
.
48.
Ko
AR
,
Hyun
HW
,
Min
SJ
,
Kim
JE
.
The differential DRP1 phosphorylation and mitochondrial dynamics in the regional specific astroglial death induced by status epilepticus
.
Front Cell Neurosci
.
2016
;
10
:
124
.
49.
Losón
OC
,
Song
Z
,
Chen
H
,
Chan
DC
.
Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission
.
Mol Biol Cell
.
2013
;
24
(
5
):
659
-
667
.
50.
Laird
DW
,
Lampe
PD
.
Cellular mechanisms of connexin-based inherited diseases
.
Trends Cell Biol
.
2022
;
32
(
1
):
58
-
69
.
51.
Singh
AK
,
Cancelas
JA
.
Gap junctions in the bone marrow lympho-hematopoietic stem cell niche, leukemia progression, and chemoresistance
.
Int J Mol Sci
.
2020
;
21
(
3
):
796
.
52.
Sorgen
PL
,
Trease
AJ
,
Spagnol
G
,
Delmar
M
,
Nielsen
MS
.
Protein(-)protein interactions with connexin 43: regulation and function
.
Int J Mol Sci
.
2018
;
19
(
5
):
1428
.
53.
Bao
X
,
Chen
Y
,
Reuss
L
,
Altenberg
GA
.
Functional expression in Xenopus oocytes of gap-junctional hemichannels formed by a cysteine-less connexin 43
.
J Biol Chem
.
2004
;
279
(
11
):
9689
-
9692
.
54.
Homma
N
,
Alvarado
JL
,
Coombs
W
, et al
.
A particle-receptor model for the insulin-induced closure of connexin43 channels
.
Circ Res
.
1998
;
83
(
1
):
27
-
32
.
55.
Berardi
AC
,
Wang
A
,
Levine
JD
,
Lopez
P
,
Scadden
DT
.
Functional isolation and characterization of human hematopoietic stem cells
.
Science
.
1995
;
267
(
5194
):
104
-
108
.
56.
Cheng
T
,
Rodrigues
N
,
Shen
H
, et al
.
Hematopoietic stem cell quiescence maintained by p21cip1/waf1
.
Science
.
2000
;
287
(
5459
):
1804
-
1808
.
57.
Hwang
PM
,
Bunz
F
,
Yu
J
, et al
.
Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells
.
Nat Med
.
2001
;
7
(
10
):
1111
-
1117
.
58.
Zhang
Y
,
Qian
Y
,
Zhang
J
, et al
.
Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2
.
Genes Dev
.
2017
;
31
(
12
):
1243
-
1256
.
59.
Song
Z
,
Park
SH
,
Mu
WC
, et al
.
An NAD+-dependent metabolic checkpoint regulates hematopoietic stem cell activation and aging
.
Nat Aging
.
2024
;
4
(
10
):
1384
-
1393
.
60.
Contreras
JE
,
Sáez
JC
,
Bukauskas
FF
,
Bennett
MV
.
Gating and regulation of connexin 43 (Cx43) hemichannels
.
Proc Natl Acad Sci U S A
.
2003
;
100
(
20
):
11388
-
11393
.
61.
Smirnova
E
,
Griparic
L
,
Shurland
DL
,
van der Bliek
AM
.
Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
.
Mol Biol Cell
.
2001
;
12
(
8
):
2245
-
2256
.
62.
Smyth
JW
,
Shaw
RM
.
Autoregulation of connexin43 gap junction formation by internally translated isoforms
.
Cell Rep
.
2013
;
5
(
3
):
611
-
618
.
63.
Shimura
D
,
Nuebel
E
,
Baum
R
, et al
.
Protective mitochondrial fission induced by stress-responsive protein GJA1-20k
.
Elife
.
2021
;
10
:
e69207
.
64.
Bejarano
E
,
Yuste
A
,
Patel
B
,
Stout
RF
,
Spray
DC
,
Cuervo
AM
.
Connexins modulate autophagosome biogenesis
.
Nat Cell Biol
.
2014
;
16
(
5
):
401
-
414
.
You do not currently have access to this content.
Sign in via your Institution