• A high expression of CLPP, a mitochondrial CLP endopeptidase component, associates with advanced disease burden and confers a poor prognosis.

  • CLP suppression depletes cellular ATP stores, induces apoptosis and mitophagy, overcomes drug resistance, and exerts antitumor efficacy.

Abstract

Plasma cell dyscrasias encompass a spectrum from the precursors monoclonal gammopathy of undetermined significance and smoldering myeloma to symptomatic myeloma, but the genes that enable progression and confer poor prognosis are incompletely understood. Using single-cell transcriptomics, we identified the caseinolytic protease proteolytic subunit (CLPP), a key component of the mitochondrial caseinolytic protease (CLP) serine endopeptidase, as being overexpressed in CD138+ neoplastic vs normal and in symptomatic vs precursor plasma cells. Its high expression was associated with an adverse prognosis across multiple molecularly defined subgroups in the newly diagnosed and relapsed/refractory settings and with extramedullary disease. Pharmacologic CLPP inhibition and genetic suppression reduced organoid growth, cell viability, and cell cycle progression, and triggering an unfolded protein response and apoptosis. This occurred in association with mitochondrial transmembrane potential loss and caspase and proteasome activation in a reactive oxygen species–dependent manner. Downstream consequences included autophagy and mitophagy induction and reductions in oxidative phosphorylation and glycolysis with consequent compromise of mitochondrial and cytoplasmic adenosine triphosphate (ATP) production. CLP endopeptidase inhibition overcame conventional and novel drug resistance, induced apoptosis in primary samples, showed efficacy in vivo, and could be achieved with the clinically relevant agent inobrodib. Finally, regimens combining a CLPP and proteasome inhibitor showed enhanced efficacy, as did combinations with inhibitors of intermediary metabolism and autophagy. Taken together, our data indicate that CLPP is a key contributor to transformed plasma cells, a novel mediator of high-risk behavior, and a legitimate target for myeloma therapy whose inhibitors could be rationally combined with current therapeutics to improve outcomes.

1.
Gandolfi
S
,
Laubach
JP
,
Hideshima
T
,
Chauhan
D
,
Anderson
KC
,
Richardson
PG
.
The proteasome and proteasome inhibitors in multiple myeloma
.
Cancer Metastasis Rev
.
2017
;
36
(
4
):
561
-
584
.
2.
Manasanch
EE
,
Orlowski
RZ
.
Proteasome inhibitors in cancer therapy
.
Nat Rev Clin Oncol
.
2017
;
14
(
7
):
417
-
433
.
3.
Chen
B
,
Retzlaff
M
,
Roos
T
,
Frydman
J
.
Cellular strategies of protein quality control
.
Cold Spring Harb Perspect Biol
.
2011
;
3
(
8
):
a004374
.
4.
Jakob
C
,
Egerer
K
,
Liebisch
P
, et al
.
Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma
.
Blood
.
2007
;
109
(
5
):
2100
-
2105
.
5.
Wu
D
,
Miao
J
,
Hu
J
, et al
.
PSMB7 is a key gene involved in the development of multiple myeloma and resistance to bortezomib
.
Front Oncol
.
2021
;
11
:
684232
.
6.
Garcia
JB
,
Storti
P
,
Iannozzi
NT
, et al
.
Identification of PSMB4 and PSMD4 as novel target genes correlated with 1q21 amplification in patients with smoldering myeloma and multiple myeloma
.
Haematologica
.
2024
;
109
(
2
):
627
-
631
.
7.
Kunacheewa
C
,
Orlowski
RZ
.
New drugs in multiple myeloma
.
Annu Rev Med
.
2019
;
70
:
521
-
547
.
8.
Bianchi
G
,
Oliva
L
,
Cascio
P
, et al
.
The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition
.
Blood
.
2009
;
113
(
13
):
3040
-
3049
.
9.
Nouri
K
,
Feng
Y
,
Schimmer
AD
.
Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy
.
Cell Death Dis
.
2020
;
11
(
10
):
841
.
10.
Sauer
RT
,
Fei
X
,
Bell
TA
,
Baker
TA
.
Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis
.
Crit Rev Biochem Mol Biol
.
2022
;
57
(
2
):
188
-
204
.
11.
Orlowski
M
,
Wilk
S
.
Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex
.
Arch Biochem Biophys
.
2000
;
383
(
1
):
1
-
16
.
12.
Mabanglo
MF
,
Houry
WA
.
Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules
.
J Biol Chem
.
2022
;
298
(
5
):
101781
.
13.
Mabanglo
MF
,
Bhandari
V
,
Houry
WA
.
Substrates and interactors of the ClpP protease in the mitochondria
.
Curr Opin Chem Biol
.
2022
;
66
:
102078
.
14.
Ishizawa
J
,
Zarabi
SF
,
Davis
RE
, et al
.
Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality
.
Cancer Cell
.
2019
;
35
(
5
):
721
-
737.e9
.
15.
Cole
A
,
Wang
Z
,
Coyaud
E
, et al
.
Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia
.
Cancer Cell
.
2015
;
27
(
6
):
864
-
876
.
16.
Tu
YS
,
He
J
,
Liu
H
, et al
.
The imipridone ONC201 induces apoptosis and overcomes chemotherapy resistance by up-regulation of Bim in multiple myeloma
.
Neoplasia
.
2017
;
19
(
10
):
772
-
780
.
17.
Dang
M
,
Wang
R
,
Lee
HC
, et al
.
Single cell clonotypic and transcriptional evolution of multiple myeloma precursor disease
.
Cancer Cell
.
2023
;
41
(
6
):
1032
-
1047.e4
.
18.
Hao
Y
,
Hao
S
,
Andersen-Nissen
E
, et al
.
Integrated analysis of multimodal single-cell data
.
Cell
.
2021
;
184
(
13
):
3573
-
3587.e29
.
19.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
20.
Gulati
GS
,
Sikandar
SS
,
Wesche
DJ
, et al
.
Single-cell transcriptional diversity is a hallmark of developmental potential
.
Science
.
2020
;
367
(
6476
):
405
-
411
.
21.
Mertins
P
,
Tang
LC
,
Krug
K
, et al
.
Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry
.
Nat Protoc
.
2018
;
13
(
7
):
1632
-
1661
.
22.
Metzger
MB
,
Maurer
MJ
,
Dancy
BM
,
Michaelis
S
.
Degradation of a cytosolic protein requires endoplasmic reticulum-associated degradation machinery
.
J Biol Chem
.
2008
;
283
(
47
):
32302
-
32316
.
23.
Bjorklund
CC
,
Baladandayuthapani
V
,
Lin
HY
, et al
.
Evidence of a role for CD44 and cell adhesion in mediating resistance to lenalidomide in multiple myeloma: therapeutic implications
.
Leukemia
.
2014
;
28
(
2
):
373
-
383
.
24.
Frietze
KK
,
Brown
AM
,
Das
D
, et al
.
Lipotoxicity reduces DDX58/Rig-1 expression and activity leading to impaired autophagy and cell death
.
Autophagy
.
2022
;
18
(
1
):
142
-
160
.
25.
Konig
J
,
Ott
C
,
Hugo
M
, et al
.
Mitochondrial contribution to lipofuscin formation
.
Redox Biol
.
2017
;
11
:
673
-
681
.
26.
Wang
W
,
Lu
J
,
Yang
WC
,
Spear
ED
,
Michaelis
S
,
Matunis
MJ
.
Analysis of a degron-containing reporter protein GFP-CL1 reveals a role for SUMO1 in cytosolic protein quality control
.
J Biol Chem
.
2023
;
299
(
2
):
102851
.
27.
Deng
X
,
Sun
X
,
Yue
W
, et al
.
CHMP2B regulates TDP-43 phosphorylation and cytotoxicity independent of autophagy via CK1
.
J Cell Biol
.
2022
;
221
(
1
):
e202103033
.
28.
You
B
,
Xia
T
,
Gu
M
, et al
.
AMPK-mTOR-mediated activation of autophagy promotes formation of dormant polyploid giant cancer cells
.
Cancer Res
.
2022
;
82
(
5
):
846
-
858
.
29.
Zhuang
J
,
Shirazi
F
,
Singh
RK
, et al
.
Ubiquitin-activating enzyme inhibition induces an unfolded protein response and overcomes drug resistance in myeloma
.
Blood
.
2019
;
133
(
14
):
1572
-
1584
.
30.
Qin
L
,
Chen
J
,
Lu
D
, et al
.
Development of improved SRC-3 inhibitors as breast cancer therapeutic agents
.
Endocr Relat Cancer
.
2021
;
28
(
10
):
657
-
670
.
31.
Cumming
BM
,
Reddy
VP
,
Steyn
AJC
.
The analysis of mycobacterium tuberculosis-induced bioenergetic changes in infected macrophages using an extracellular flux analyzer
.
Methods Mol Biol
.
2020
;
2184
:
161
-
184
.
32.
Iankov
ID
,
Hillestad
ML
,
Dietz
AB
,
Russell
SJ
,
Galanis
E
.
Converting tumor-specific markers into reporters of oncolytic virus infection
.
Mol Ther
.
2009
;
17
(
8
):
1395
-
1403
.
33.
Moreno Rueda
LY
,
Wang
H
,
Akagi
K
, et al
.
Single-cell analysis of neoplastic plasma cells across identifies myeloma pathobiology mediators and potential targets
.
Cell Rep Med
.
2025
;
6
(
2
):
101925
.
34.
Zhan
F
,
Huang
Y
,
Colla
S
, et al
.
The molecular classification of multiple myeloma
.
Blood
.
2006
;
108
(
6
):
2020
-
2028
.
35.
Usmani
SZ
,
Heuck
C
,
Mitchell
A
, et al
.
Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents
.
Haematologica
.
2012
;
97
(
11
):
1761
-
1767
.
36.
Zeiler
E
,
Korotkov
VS
,
Lorenz-Baath
K
,
Bottcher
T
,
Sieber
SA
.
Development and characterization of improved β-lactone-based anti-virulence drugs targeting ClpP
.
Bioorg Med Chem
.
2012
;
20
(
2
):
583
-
591
.
37.
Nakamura
H
,
Takada
K
.
Reactive oxygen species in cancer: current findings and future directions
.
Cancer Sci
.
2021
;
112
(
10
):
3945
-
3952
.
38.
Aiken
CT
,
Kaake
RM
,
Wang
X
,
Huang
L
.
Oxidative stress-mediated regulation of proteasome complexes
.
Mol Cell Proteomics
.
2011
;
10
(
5
):
006924
.
39.
Nicosia
L
,
Spencer
GJ
,
Brooks
N
, et al
.
Therapeutic targeting of EP300/CBP by bromodomain inhibition in hematologic malignancies
.
Cancer Cell
.
2023
;
41
(
12
):
2136
-
2153.e13
.
40.
Lam
WY
,
Bhattacharya
D
.
Metabolic links between plasma cell survival, secretion, and stress
.
Trends Immunol
.
2018
;
39
(
1
):
19
-
27
.
41.
Boothby
M
,
Rickert
RC
.
Metabolic regulation of the immune humoral response
.
Immunity
.
2017
;
46
(
5
):
743
-
755
.
42.
Aronov
M
,
Tirosh
B
.
Metabolic control of plasma cell differentiation- what we know and what we don't know
.
J Clin Immunol
.
2016
;
36
(
suppl 1
):
12
-
17
.
43.
Caillot
M
,
Dakik
H
,
Mazurier
F
,
Sola
B
.
Targeting reactive oxygen species metabolism to induce myeloma cell death
.
Cancers (Basel)
.
2021
;
13
(
10
):
2411
.
44.
Voos
W
,
Jaworek
W
,
Wilkening
A
,
Bruderek
M
.
Protein quality control at the mitochondrion
.
Essays Biochem
.
2016
;
60
(
2
):
213
-
225
.
45.
Lee
YG
,
Kim
HW
,
Nam
Y
, et al
.
LONP1 and ClpP cooperatively regulate mitochondrial proteostasis for cancer cell survival
.
Oncogenesis
.
2021
;
10
(
2
):
18
.
46.
Pryde
KR
,
Taanman
JW
,
Schapira
AH
.
A LON-ClpP proteolytic axis degrades complex I to extinguish ROS production in depolarized mitochondria
.
Cell Rep
.
2016
;
17
(
10
):
2522
-
2531
.
47.
Ramundo
S
,
Casero
D
,
Muhlhaus
T
, et al
.
Conditional depletion of the Chlamydomonas chloroplast ClpP protease activates nuclear genes involved in autophagy and plastid protein quality control
.
Plant Cell
.
2014
;
26
(
5
):
2201
-
2222
.
48.
Seo
JH
,
Rivadeneira
DB
,
Caino
MC
, et al
.
The mitochondrial unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis
.
PLoS Biol
.
2016
;
14
(
7
):
e1002507
.
49.
Lim
JSL
,
Chong
PSY
,
Chng
WJ
.
Metabolic vulnerabilities in multiple myeloma
.
Cancers (Basel)
.
2022
;
14
(
8
):
1905
.
50.
Matamala Montoya
M
,
van Slobbe
GJJ
,
Chang
JC
,
Zaal
EA
,
Berkers
CR
.
Metabolic changes underlying drug resistance in the multiple myeloma tumor microenvironment
.
Front Oncol
.
2023
;
13
:
1155621
.
51.
Zub
KA
,
Sousa
MM
,
Sarno
A
, et al
.
Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells
.
PLoS One
.
2015
;
10
(
3
):
e0119857
.
52.
Szczepanowska
K
,
Maiti
P
,
Kukat
A
, et al
.
CLPP coordinates mitoribosomal assembly through the regulation of ERAL1 levels
.
EMBO J
.
2016
;
35
(
23
):
2566
-
2583
.
53.
Sharma
LK
,
Lu
J
,
Bai
Y
.
Mitochondrial respiratory complex I: structure, function and implication in human diseases
.
Curr Med Chem
.
2009
;
16
(
10
):
1266
-
1277
.
54.
Bhardwaj
V
,
He
J
.
Reactive oxygen species, metabolic plasticity, and drug resistance in cancer
.
Int J Mol Sci
.
2020
;
21
(
10
):
3412
.
55.
Bhardwaj
S
,
Roy
KK
.
ClpP peptidase as a plausible target for the discovery of novel antibiotics
.
Curr Drug Targets
.
2024
;
25
(
2
):
108
-
120
.
You do not currently have access to this content.
Sign in via your Institution