• Galectin-9–TIM-3 axis is upregulated in B-ALL, negatively correlating with clinical outcome, and galectin-9 impairs CAR19 T-cell function.

  • Blocking galectin-9–TIM-3 axis with a TIM-3–Fc decoy secreted by engineered T cells enhances the efficacy and persistence of CAR19 T cells.

Abstract

Relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL) remains a challenging disease with dismal prognosis. Despite the revolutionary impact of CD19-directed chimeric antigen receptor (CAR19) T-cell therapy, >50% of patients relapse within a year. Both leukemia cell–intrinsic factors favoring immune escape and poor CAR T-cell persistence contribute to clinical failure. Moreover, the expression of immune checkpoint receptors (ICRs) and their ligands within the bone marrow (BM) microenvironment may contribute to leukemia progression and therapy resistance. Here, we characterized the expression of ICRs and their ligands in leukemic blasts, T cells, and mesenchymal stromal cells (MSCs) from B-ALL BM samples at diagnosis and relapse, comparing them with age-matched healthy BM controls. Our findings reveal a significantly upregulated expression of TIM-3 in T cells and its ligand, galectin-9, in both blasts and MSCs throughout disease progression. The expression of galectin-9 in B-ALL blasts and TIM-3 in CAR19 T cells negatively correlates with clinical outcome. Furthermore, we demonstrate that galectin-9 impairs CAR19 T-cell homeostasis and cytotoxicity. Notably, an engineered TIM-3–Fc decoy receptor, delivered either by primary T cells coadministered with CAR19 T cells or via a bicistronic all-in-one CAR19–TIM-3–Fc construct, improved the antileukemia efficacy and persistence of CAR19 T cells in B-ALL xenograft models. Mechanistically, CAR19–TIM-3–Fc T-cell treatment promotes the in vivo expansion of transduced and bystander effector and memory T cells, as determined by spectral flow cytometry. Collectively, these TIM-3–Fc decoy–armored CAR19 T cells offer a promising therapeutic strategy for patients with R/R B-ALL.

1.
Katz
AJ
,
Chia
VM
,
Schoonen
WM
,
Kelsh
MA
.
Acute lymphoblastic leukemia: an assessment of international incidence, survival, and disease burden
.
Cancer Causes Control
.
2015
;
26
(
11
):
1627
-
1642
.
2.
Jasinski
S
,
De Los Reyes
FA
,
Yametti
GC
,
Pierro
J
,
Raetz
E
,
Carroll
WL
.
Immunotherapy in pediatric B-cell acute lymphoblastic leukemia: advances and ongoing challenges
.
Paediatr Drugs
.
2020
;
22
(
5
):
485
-
499
.
3.
Gavralidis
A
,
Brunner
AM
.
Novel therapies in the treatment of adult acute lymphoblastic leukemia
.
Curr Hematol Malig Rep
.
2020
;
15
(
4
):
294
-
304
.
4.
Capitini
CM
.
CAR-T immunotherapy: how will it change treatment for acute lymphoblastic leukemia and beyond?
.
Expert Opin Orphan Drugs
.
2018
;
6
(
10
):
563
-
566
.
5.
Rafei
H
,
Kantarjian
HM
,
Jabbour
EJ
.
Recent advances in the treatment of acute lymphoblastic leukemia
.
Leuk Lymphoma
.
2019
;
60
(
11
):
2606
-
2621
.
6.
Talleur
AC
,
Naik
S
,
Gottschalk
S
.
Preventing relapse after CD19 CAR T-cell therapy for pediatric ALL: the role of transplant and enhanced CAR T cells
.
Hematology Am Soc Hematol Educ Program
.
2023
;
2023
(
1
):
91
-
96
.
7.
Aldoss
I
,
Bargou
RC
,
Nagorsen
D
,
Friberg
GR
,
Baeuerle
PA
,
Forman
SJ
.
Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors
.
Leukemia
.
2017
;
31
(
4
):
777
-
787
.
8.
Ruella
M
,
Maus
MV
.
Catch me if you can: leukemia escape after CD19-directed T cell immunotherapies
.
Comput Struct Biotechnol J
.
2016
;
14
:
357
-
362
.
9.
Shah
NN
,
Fry
TJ
.
Mechanisms of resistance to CAR T cell therapy
.
Nat Rev Clin Oncol
.
2019
;
16
(
6
):
372
-
385
.
10.
Song
M-K
,
Park
B-B
,
Uhm
J-E
.
Resistance mechanisms to CAR T-cell therapy and overcoming strategy in B-cell hematologic malignancies
.
Int J Mol Sci
.
2019
;
20
(
20
):
5010
.
11.
Bueno
C
,
Barrera
S
,
Bataller
A
, et al
.
CD34+CD19-CD22+ B-cell progenitors may underlie phenotypic escape in patients treated with CD19-directed therapies
.
Blood
.
2022
;
140
(
1
):
38
-
44
.
12.
Nie
Y
,
Lu
W
,
Chen
D
, et al
.
Mechanisms underlying CD19-positive ALL relapse after anti-CD19 CAR T cell therapy and associated strategies
.
Biomark Res
.
2020
;
8
(
1
):
18
.
13.
Menendez
P
,
Catalina
P
,
Rodríguez
R
, et al
.
Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene
.
J Exp Med
.
2009
;
206
(
13
):
3131
-
3141
.
14.
Bueno
C
,
Roldan
M
,
Anguita
E
, et al
.
Bone marrow mesenchymal stem cells from patients with aplastic anemia maintain functional and immune properties and do not contribute to the pathogenesis of the disease
.
Haematologica
.
2014
;
99
(
7
):
1168
-
1175
.
15.
Pui
CH
,
Crist
WM
.
Biology and treatment of acute lymphoblastic leukemia
.
J Pediatr
.
1994
;
124
(
4
):
491
-
503
.
16.
Bradstock
KF
,
Gottlieb
DJ
.
Interaction of acute leukemia cells with the bone marrow microenvironment: implications for control of minimal residual disease
.
Leuk Lymphoma
.
1995
;
18
(
1-2
):
1
-
16
.
17.
LeClerc
JM
,
Billett
AL
,
Gelber
RD
, et al
.
Treatment of childhood acute lymphoblastic leukemia: results of Dana-Farber ALL Consortium Protocol 87-01
.
J Clin Oncol
.
2002
;
20
(
1
):
237
-
246
.
18.
Hoogerbrugge
PM
,
Gerritsen
EJ
,
vd Does-van den Berg
A
, et al
.
Case-control analysis of allogeneic bone marrow transplantation versus maintenance chemotherapy for relapsed ALL in children
.
Bone Marrow Transpl
.
1995
;
15
(
2
):
255
-
259
.
19.
Khalil
DN
,
Smith
EL
,
Brentjens
RJ
,
Wolchok
JD
.
The future of cancer treatment: immunomodulation, CARs and combination immunotherapy
.
Nat Rev Clin Oncol
.
2016
;
13
(
6
):
394
. 290.
20.
Hohtari
H
,
Brück
O
,
Blom
S
, et al
.
Immune cell constitution in bone marrow microenvironment predicts outcome in adult ALL
.
Leukemia
.
2019
;
33
(
7
):
1570
-
1582
.
21.
Naghavi Alhosseini
M
,
Palazzo
M
,
Cari
L
,
Ronchetti
S
,
Migliorati
G
,
Nocentini
G
.
Overexpression of potential markers of regulatory and exhausted CD8+ T cells in the peripheral blood mononuclear cells of patients with B-acute lymphoblastic leukemia
.
Int J Mol Sci
.
2023
;
24
(
5
):
4526
.
22.
Shin
DS
,
Ribas
A
.
The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next?
.
Curr Opin Immunol
.
2015
;
33
:
23
-
35
.
23.
Mudry
RE
,
Fortney
JE
,
York
T
,
Hall
BM
,
Gibson
LF
.
Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy
.
Blood
.
2000
;
96
(
5
):
1926
-
1932
.
24.
Tesfai
Y
,
Ford
J
,
Carter
KW
, et al
.
Interactions between acute lymphoblastic leukemia and bone marrow stromal cells influence response to therapy
.
Leuk Res
.
2012
;
36
(
3
):
299
-
306
.
25.
Yang
Y
,
Mallampati
S
,
Sun
B
, et al
.
Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target
.
Cancer Lett
.
2013
;
333
(
1
):
9
-
17
.
26.
Cordoba
S
,
Onuoha
S
,
Thomas
S
, et al
.
CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial
.
Nat Med
.
2021
;
27
(
10
):
1797
-
1805
.
27.
Huemer
F
,
Leisch
M
,
Geisberger
R
, et al
.
Combination strategies for immune-checkpoint blockade and response prediction by artificial intelligence
.
Int J Mol Sci
.
2020
;
21
(
8
):
2856
.
28.
Shiravand
Y
,
Khodadadi
F
,
Kashani
SMA
, et al
.
Immune checkpoint inhibitors in cancer therapy
.
Curr Oncol
.
2022
;
29
(
5
):
3044
-
3060
.
29.
Cai
X
,
Zhan
H
,
Ye
Y
, et al
.
Current progress and future perspectives of immune checkpoint in cancer and infectious diseases
.
Front Genet
.
2021
;
12
:
785153
.
30.
Sun
Q
,
Hong
Z
,
Zhang
C
,
Wang
L
,
Han
Z
,
Ma
D
.
Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends
.
Signal Transduct Target Ther
.
2023
;
8
(
1
):
320
-
326
.
31.
Sabatos-Peyton
CA
,
Nevin
J
,
Brock
A
, et al
.
Blockade of Tim-3 binding to phosphatidylserine and CEACAM1 is a shared feature of anti-Tim-3 antibodies that have functional efficacy
.
Oncoimmunology
.
2018
;
7
(
2
):
e1385690
.
32.
Ma
S
,
Tian
Y
,
Peng
J
, et al
.
Identification of a small-molecule Tim-3 inhibitor to potentiate T cell-mediated antitumor immunotherapy in preclinical mouse models
.
Sci Transl Med
.
2023
;
15
(
722
):
eadg6752
.
33.
Kalina
T
,
Flores-Montero
J
,
van der Velden
VHJ
, et al
.
EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols
.
Leukemia
.
2012
;
26
(
9
):
1986
-
2010
.
34.
Martín-Martín
L
,
Gutiérrez-Herrero
S
,
Herrero-García
M
, et al
.
Impact of the kinetics of circulating anti-CD19 CAR-T cells and their populations on the outcome of DLBCL patients
.
Blood Cancer J
.
2024
;
14
(
1
):
83
.
35.
Foppoli
M
,
Ferreri
AJM
.
Gamma-delta t-cell lymphomas
.
Eur J Haematol
.
2015
;
94
(
3
):
206
-
218
.
36.
Gao
Z
,
Bai
Y
,
Lin
A
, et al
.
Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment
.
Mol Cancer
.
2023
;
22
(
1
):
31
.
37.
Principe
N
,
Kidman
J
,
Goh
S
, et al
.
Tumor infiltrating effector memory antigen-specific CD8+ T cells predict response to immune checkpoint therapy
.
Front Immunol
.
2020
;
11
:
584423
.
38.
Young
KJ
,
Kay
LS
,
Phillips
MJ
,
Zhang
L
.
Antitumor activity mediated by double-negative T cells
.
Cancer Res
.
2003
;
63
(
22
):
8014
-
8021
.
39.
O’Neill
C
,
Cassidy
FC
,
O’Shea
D
,
Hogan
AE
.
Mucosal associated invariant T cells in cancer-friend or foe?
.
Cancers
.
2021
;
13
(
7
):
1582
.
40.
Poorebrahim
M
,
Melief
J
,
Pico de Coaña
Y
,
L Wickström
S
,
Cid-Arregui
A
,
Kiessling
R
.
Counteracting CAR T cell dysfunction
.
Oncogene
.
2021
;
40
(
2
):
421
-
435
.
41.
Wittibschlager
V
,
Bacher
U
,
Seipel
K
, et al
.
CAR T-cell persistence correlates with improved outcome in patients with B-cell lymphoma
.
Int J Mol Sci
.
2023
;
24
(
6
):
5688
.
42.
Pietrobon
V
,
Todd
LA
,
Goswami
A
,
Stefanson
O
,
Yang
Z
,
Marincola
F
.
Improving CAR T-cell persistence
.
Int J Mol Sci
.
2021
;
22
(
19
):
10828
.
43.
Kong
Y
,
Tang
L
,
You
Y
,
Li
Q
,
Zhu
X
.
Analysis of causes for poor persistence of CAR-T cell therapy in vivo
.
Front Immunol
.
2023
;
14
.
44.
Vicente López
Á
,
Vázquez García
MN
,
Melen
GJ
, et al
.
Mesenchymal stromal cells derived from the bone marrow of acute lymphoblastic leukemia patients show altered BMP4 production: correlations with the course of disease
.
PLoS One
.
2014
;
9
(
1
):
e84496
.
45.
Vaitaitis
GM
,
Wagner
DH
.
Galectin-9 controls CD40 signaling through a Tim-3 independent mechanism and redirects the cytokine profile of pathogenic T cells in autoimmunity
.
PLOS ONE
.
2012
;
7
(
6
):
e38708
.
46.
Sun
J
,
Sui
Y
,
Wang
Y
, et al
.
Galectin-9 expression correlates with therapeutic effect in rheumatoid arthritis
.
Sci Rep
.
2021
;
11
(
1
):
5562
.
47.
Kang
J
,
Wei
Z-F
,
Li
M-X
,
Wang
J-H
.
Modulatory effect of Tim-3/Galectin-9 axis on T-cell-mediated immunity in pulmonary tuberculosis
.
J Biosci
.
2020
;
45
(
1
):
60
.
48.
Nebbia
G
,
Peppa
D
,
Schurich
A
, et al
.
Upregulation of the Tim-3/Galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection
.
PLOS ONE
.
2012
;
7
(
10
):
e47648
.
49.
Yasinska
IM
,
Sakhnevych
SS
,
Pavlova
L
, et al
.
The Tim-3-Galectin-9 pathway and its regulatory mechanisms in human breast cancer
.
Front Immunol
.
2019
;
10
:
1594
.
50.
Lv
Y
,
Ma
X
,
Ma
Y
,
Du
Y
,
Feng
J
.
A new emerging target in cancer immunotherapy: Galectin-9 (LGALS9)
.
Genes Dis
.
2023
;
10
(
6
):
2366
-
2382
.
51.
Kandel
S
,
Adhikary
P
,
Li
G
,
Cheng
K
.
The TIM3/Gal9 signaling pathway: an emerging target for cancer immunotherapy
.
Cancer Lett
.
2021
;
510
:
67
-
78
.
52.
Acharya
N
,
Sabatos-Peyton
C
,
Anderson
AC
.
Tim-3 finds its place in the cancer immunotherapy landscape
.
J Immunother Cancer
.
2020
;
8
(
1
):
e000911
.
53.
Zheng
S
,
Song
J
,
Linghu
D
, et al
.
Galectin-9 blockade synergizes with ATM inhibition to induce potent anti-tumor immunity
.
Int J Biol Sci
.
2023
;
19
(
3
):
981
-
993
.
54.
Henry
CJ
,
Lee
M
,
Filipovic
A
.
Lyt-200, a Humanized anti-Galectin-9 antibody, exhibits preclinical efficacy in models of hematological malignancies [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
8837
.
55.
Yang
R
,
Sun
L
,
Li
C-F
, et al
.
Development and characterization of anti-galectin-9 antibodies that protect T cells from galectin-9-induced cell death
.
J Biol Chem
.
2022
;
298
(
4
):
101821
.
56.
Lankipalli
S
,
Ramagopal
UA
.
A structural perspective on the design of decoy immune modulators
.
Pharmacol Res
.
2021
;
170
:
105735
.
57.
Ozaki
K
,
Leonard
WJ
.
Cytokine and cytokine receptor pleiotropy and redundancy
.
J Biol Chem
.
2002
;
277
(
33
):
29355
-
29358
.
58.
Mpofu
S
,
Fatima
F
,
Moots
RJ
.
Anti-TNF-alpha therapies: they are all the same (aren’t they?)
.
Rheumatology
.
2005
;
44
(
3
):
271
-
273
.
59.
Cai
L
,
Li
Y
,
Tan
J
,
Xu
L
,
Li
Y
.
Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy
.
J Hematol Oncol
.
2023
;
16
(
1
):
101
.
60.
Curigliano
G
,
Gelderblom
H
,
Mach
N
, et al
.
Phase I/Ib clinical trial of sabatolimab, an anti-TIM-3 antibody, alone and in combination with spartalizumab, an anti-PD-1 antibody, in advanced solid tumors
.
Clin Cancer Res
.
2021
;
27
(
13
):
3620
-
3629
.
61.
Sakuishi
K
,
Apetoh
L
,
Sullivan
JM
,
Blazar
BR
,
Kuchroo
VK
,
Anderson
AC
.
Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity
.
J Exp Med
.
2010
;
207
(
10
):
2187
-
2194
.
62.
Rupp
LJ
,
Schumann
K
,
Roybal
KT
, et al
.
CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells
.
Sci Rep
.
2017
;
7
(
1
):
737
.
63.
Zhou
J
,
Yu
J
,
Wang
Y
, et al
.
ShRNA-mediated silencing of PD-1 augments the efficacy of chimeric antigen receptor T cells on subcutaneous prostate and leukemia xenograft
.
Biomed Pharmacother
.
2021
;
137
:
111339
.
64.
Li
S
,
Siriwon
N
,
Zhang
X
, et al
.
Enhanced cancer immunotherapy by chimeric antigen receptor–modified T cells engineered to secrete checkpoint inhibitors
.
Clin Cancer Res
.
2017
;
23
(
22
):
6982
-
6992
.
65.
Rafiq
S
,
Yeku
OO
,
Jackson
HJ
, et al
.
Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo
.
Nat Biotechnol
.
2018
;
36
(
9
):
847
-
856
.
66.
Suarez
ER
,
Chang
D-K
,
Sun
J
, et al
.
Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model
.
Oncotarget
.
2016
;
7
(
23
):
34341
-
34355
.
67.
Wei
J
,
Luo
C
,
Wang
Y
, et al
.
PD-1 silencing impairs the anti-tumor function of chimeric antigen receptor modified T cells by inhibiting proliferation activity
.
J Immunother Cancer
.
2019
;
7
(
1
):
209
.
68.
Andreu-Saumell
I
,
Rodriguez-Garcia
A
,
Mühlgrabner
V
, et al
.
CAR affinity modulates the sensitivity of CAR-T cells to PD-1/PD-L1-mediated inhibition
.
Nat Commun
.
2024
;
15
(
1
):
3552
.
69.
Avery
L
,
Filderman
J
,
Szymczak-Workman
AL
,
Kane
LP
.
Tim-3 co-stimulation promotes short-lived effector T cells, restricts memory precursors, and is dispensable for T cell exhaustion
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
10
):
2455
-
2460
.
70.
Gorman
JV
,
Starbeck-Miller
G
,
Pham
N-LL
, et al
.
Tim-3 directly enhances CD8 T cell responses to acute Listeria monocytogenes infection
.
J Immunol
.
2014
;
192
(
7
):
3133
-
3142
.
71.
Cogswell
DT
,
Gapin
L
,
Tobin
HM
,
McCarter
MD
,
Tobin
RP
.
MAIT cells: partners or enemies in cancer immunotherapy?
.
Cancers
.
2021
;
13
(
7
):
1502
.
72.
Li
X
,
Lu
H
,
Gu
Y
, et al
.
Tim-3 suppresses the killing effect of Vγ9Vδ2 T cells on colon cancer cells by reducing perforin and granzyme B expression
.
Exp Cell Res
.
2020
;
386
(
1
):
111719
.
73.
Merims
S
,
Li
X
,
Joe
B
, et al
.
Anti-leukemia effect of ex vivo expanded DNT cells from AML patients: a potential novel autologous T-cell adoptive immunotherapy
.
Leukemia
.
2011
;
25
(
9
):
1415
-
1422
.
74.
Catafal-Tardos
E
,
Baglioni
MV
,
Bekiaris
V
.
Inhibiting the unconventionals: importance of immune checkpoint receptors in γδ T, MAIT, and NKT cells
.
Cancers
.
2021
;
13
(
18
):
4647
.
75.
Sundström
P
,
Dutta
N
,
Rodin
W
,
Hallqvist
A
,
Raghavan
S
,
Quiding Järbrink
M
.
Immune checkpoint blockade improves the activation and function of circulating mucosal-associated invariant T (MAIT) cells in patients with non-small cell lung cancer
.
Oncoimmunology
.
2024
;
13
(
1
):
2312631
.
76.
Guerrero-Murillo
M
,
Rill-Hinarejos
A
,
Trincado
JL
, et al
.
Integrative single-cell multi-omics of CD19-CARpos and CARneg T cells suggest drivers of immunotherapy response in B cell neoplasias
.
Cell Rep Med
.
2025
;
0
(
0
):
102026
.
77.
Safavi
A
,
Samir
J
,
Singh
M
, et al
.
Identification of clonally expanded γδ T-cell populations during CAR-T cell therapy
.
Immunol Cell Biol
.
2025
;
103
(
1
):
60
-
72
.
78.
Lu
P
,
Lu
X
,
Zhang
X
, et al
.
Which is better in CD19 CAR-T treatment of r/r B-ALL, CD28 or 4-1BB? A parallel trial under the same manufacturing process [abstract]
.
J Clin Oncol
.
2018
;
36
(
suppl 15
):
3041
.
79.
Zhao
X
,
Yang
J
,
Zhang
X
, et al
.
Efficacy and safety of CD28- or 4-1BB-based CD19 CAR-T cells in B cell acute lymphoblastic leukemia
.
Mol Ther Oncolytics
.
2020
;
18
:
272
-
281
.
You do not currently have access to this content.
Sign in via your Institution