Abstract

The development of multiple myeloma is typically associated with various cytogenetic abnormalities; however, these genetic changes alone do not fully account for the observed heterogeneity in patient prognosis and treatment response. Recent studies leveraging next-generation sequencing and genomic approaches have shown that epigenetic alterations are crucial in myeloma development and therapeutic resistance. These changes contribute to high levels of transcriptomic instability and enable cellular adaptation to targeted therapies and immunotherapies through diverse evolutionary trajectories. In this regard, aberrations of histone modifications and chromatin remodeling affect various cellular processes such as DNA repair, DNA damage response, cellular survival, and apoptosis signaling, which provides a strong rationale for developing epigenetic-targeted therapies for myeloma treatment. In this review, we focus on recent advances and research gaps in understanding the deregulation of histone acetylation, a widespread and versatile process of histone modification occurring at lysine residues at the N-terminus of histone tails, and its intimate interplay with chromatin remodeling complexes in orchestrating dynamic chromatin functional states and transcriptional outputs. We also provide an updated review of epigenetic modulatory drugs targeting histone deacetylases (CREB-binding protein/p300) and bromodomain and extraterminal proteins, along with a discussion of their limitations and future perspectives in myeloma treatment.

1.
Hussein
M
,
Vrionis
F
,
Allison
R
, et al;
International Myeloma Working Group
.
The role of vertebral augmentation in multiple myeloma: International Myeloma Working Group consensus statement [published correction appears in Leukemia. 2008;22(8):1649]
.
Leukemia
.
2008
;
22
(
8
):
1479
-
1484
.
2.
Leblay
N
,
Ahn
S
,
Tilmont
R
, et al
.
Integrated epigenetic and transcriptional single-cell analysis of t (11; 14) multiple myeloma and its BCL2 dependency
.
Blood
.
2024
;
143
(
1
):
42
-
56
.
3.
Poos
AM
,
Prokoph
N
,
Przybilla
MJ
, et al
.
Resolving therapy resistance mechanisms in multiple myeloma by multiomics subclone analysis
.
Blood
.
2023
;
142
(
19
):
1633
-
1646
.
4.
Frede
J
,
Anand
P
,
Sotudeh
N
, et al
.
Dynamic transcriptional reprogramming leads to immunotherapeutic vulnerabilities in myeloma
.
Nat Cell Biol
.
2021
;
23
(
11
):
1199
-
1211
.
5.
Chaidos
A
,
Barnes
CP
,
Cowan
G
, et al
.
Clinical drug resistance linked to interconvertible phenotypic and functional states of tumor-propagating cells in multiple myeloma
.
Blood
.
2013
;
121
(
2
):
318
-
328
.
6.
Walker
BA
,
Wardell
CP
,
Chiecchio
L
, et al
.
Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma
.
Blood
.
2011
;
117
(
2
):
553
-
562
.
7.
Allis
CD
,
Jenuwein
T
.
The molecular hallmarks of epigenetic control
.
Nat Rev Genet
.
2016
;
17
(
8
):
487
-
500
.
8.
Agirre
X
,
Castellano
G
,
Pascual
M
, et al
.
Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers
.
Genome Res
.
2015
;
25
(
4
):
478
-
487
.
9.
Du
J
,
Johnson
LM
,
Jacobsen
SE
,
Patel
DJ
.
DNA methylation pathways and their crosstalk with histone methylation
.
Nat Rev Mol Cell Biol
.
2015
;
16
(
9
):
519
-
532
.
10.
Li
Y
,
Chen
X
,
Lu
C
.
The interplay between DNA and histone methylation: molecular mechanisms and disease implications
.
EMBO Rep
.
2021
;
22
(
5
):
e51803
.
11.
Garcia-Gomez
A
,
Li
T
,
de la Calle-Fabregat
C
, et al
.
Targeting aberrant DNA methylation in mesenchymal stromal cells as a treatment for myeloma bone disease
.
Nat Commun
.
2021
;
12
(
1
):
421
.
12.
San José-Enériz
E
,
Agirre
X
,
Rabal
O
, et al
.
Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies
.
Nat Commun
.
2017
;
8
(
1
):
15424
.
13.
Harada
T
,
Ohguchi
H
,
Grondin
Y
, et al
.
HDAC3 regulates DNMT1 expression in multiple myeloma: therapeutic implications
.
Leukemia
.
2017
;
31
(
12
):
2670
-
2677
.
14.
Xu
W
,
Li
J
,
Rong
B
, et al
.
DNMT3A reads and connects histone H3K36me2 to DNA methylation [published correction appears in Protein Cell. 2020;11(3):230]
.
Protein Cell
.
2020
;
11
(
2
):
150
-
154
.
15.
Weinberg
DN
,
Papillon-Cavanagh
S
,
Chen
H
, et al
.
The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape
.
Nature
.
2019
;
573
(
7773
):
281
-
286
.
16.
Cui
YS
,
Song
YP
,
Fang
BJ
.
The role of long non-coding RNAs in multiple myeloma
.
Eur J Haematol
.
2019
;
103
(
1
):
3
-
9
.
17.
Ribeiro
DM
,
Zanzoni
A
,
Cipriano
A
, et al
.
Protein complex scaffolding predicted as a prevalent function of long non-coding RNAs
.
Nucleic Acids Res
.
2018
;
46
(
2
):
917
-
928
.
18.
Kugel
JF
,
Goodrich
JA
.
Non-coding RNAs: key regulators of mammalian transcription
.
Trends Biochemical Sciences
.
2012
;
37
(
4
):
144
-
151
.
19.
Stamato
MA
,
Juli
G
,
Romeo
E
, et al
.
Inhibition of EZH2 triggers the tumor suppressive miR-29b network in multiple myeloma
.
Oncotarget
.
2017
;
8
(
63
):
106527
-
106537
.
20.
Tsai
M-C
,
Manor
O
,
Wan
Y
, et al
.
Long noncoding RNA as modular scaffold of histone modification complexes
.
Science
.
2010
;
329
(
5992
):
689
-
693
.
21.
Yang
LH
,
Du
P
,
Liu
W
, et al
.
LncRNA ANRIL promotes multiple myeloma progression and bortezomib resistance by EZH2-mediated epigenetically silencing of PTEN
.
Neoplasma
.
2021
;
68
(
04
):
788
-
797
.
22.
Kuo
MH
,
Allis
CD
.
Roles of histone acetyltransferases and deacetylases in gene regulation
.
Bioessays
.
1998
;
20
(
8
):
615
-
626
.
23.
Zheng
Y
,
Thomas
PM
,
Kelleher
NL
.
Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites
.
Nat Commun
.
2013
;
4
(
1
):
2203
.
24.
Nagy
Z
,
Tora
L
.
Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation
.
Oncogene
.
2007
;
26
(
37
):
5341
-
5357
.
25.
Zhang
W
,
Kadam
S
,
Emerson
BM
,
Bieker
JJ
.
Site-specific acetylation by p300 or CREB binding protein regulates erythroid Krüppel-like factor transcriptional activity via its interaction with the SWI-SNF complex
.
Mol Cell Biol
.
2001
;
21
(
7
):
2413
-
2422
.
26.
Hassan
AH
,
Neely
KE
,
Workman
JL
.
Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes
.
Cell
.
2001
;
104
(
6
):
817
-
827
.
27.
Bowen
NJ
,
Fujita
N
,
Kajita
M
,
Wade
PA
.
Mi-2/NuRD: multiple complexes for many purposes
.
Biochim Biophys Acta
.
2004
;
1677
(
1-3
):
52
-
57
.
28.
Marques
JG
,
Gryder
BE
,
Pavlovic
B
, et al
.
NuRD subunit CHD4 regulates super-enhancer accessibility in rhabdomyosarcoma and represents a general tumor dependency
.
Elife
.
2020
;
9
:
e54993
.
29.
Cunliffe
VT
.
Eloquent silence: developmental functions of class I histone deacetylases
.
Curr Opin Genet Dev
.
2008
;
18
(
5
):
404
-
410
.
30.
Witt
O
,
Deubzer
HE
,
Milde
T
,
Oehme
I
.
HDAC family: what are the cancer relevant targets?
.
Cancer Lett
.
2009
;
277
(
1
):
8
-
21
.
31.
Mithraprabhu
S
,
Kalff
A
,
Chow
A
,
Khong
T
,
Spencer
A
.
Dysregulated Class I histone deacetylases are indicators of poor prognosis in multiple myeloma
.
Epigenetics
.
2014
;
9
(
11
):
1511
-
1520
.
32.
Kikuchi
J
,
Wada
T
,
Shimizu
R
, et al
.
Histone deacetylases are critical targets of bortezomib-induced cytotoxicity in multiple myeloma
.
Blood
.
2010
;
116
(
3
):
406
-
417
.
33.
Mithraprabhu
S
,
Khong
T
,
Jones
SS
,
Spencer
A
.
Histone deacetylase (HDAC) inhibitors as single agents induce multiple myeloma cell death principally through the inhibition of class I HDAC
.
Br J Haematol
.
2013
;
162
(
4
):
559
-
562
.
34.
Pei
X-Y
,
Dai
Y
,
Grant
S
.
Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors
.
Clin Cancer Res
.
2004
;
10
(
11
):
3839
-
3852
.
35.
Feng
R
,
Oton
A
,
Mapara
MY
,
Anderson
G
,
Belani
C
,
Lentzsch
S
.
The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage
.
Br J Haematol
.
2007
;
139
(
3
):
385
-
397
.
36.
Jagannath
S
,
Dimopoulos
MA
,
Lonial
S
.
Combined proteasome and histone deacetylase inhibition: a promising synergy for patients with relapsed/refractory multiple myeloma
.
Leuk Res
.
2010
;
34
(
9
):
1111
-
1118
.
37.
Siegel
DS
,
Dimopoulos
M
,
Jagannath
S
, et al
.
VANTAGE 095: an international, multicenter, open-label study of vorinostat (MK-0683) in combination with bortezomib in patients with relapsed and refractory multiple myeloma
.
Clin Lymphoma Myeloma Leuk
.
2016
;
16
(
6
):
329
-
334.e1
.
38.
Dimopoulos
M
,
Siegel
DS
,
Lonial
S
, et al
.
Vorinostat or placebo in combination with bortezomib in patients with multiple myeloma (VANTAGE 088): a multicentre, randomised, double-blind study
.
Lancet Oncol
.
2013
;
14
(
11
):
1129
-
1140
.
39.
Mithraprabhu
S
,
Khong
T
,
Spencer
A
.
Overcoming inherent resistance to histone deacetylase inhibitors in multiple myeloma cells by targeting pathways integral to the actin cytoskeleton
.
Cell Death Dis
.
2014
;
5
(
3
):
e1134
.
40.
Valenzuela-Fernandez
A
,
Cabrero
JR
,
Serrador
JM
,
Sánchez-Madrid
F
.
HDAC6: a key regulator of cytoskeleton, cell migration and cell–cell interactions
.
Trends Cell Biology
.
2008
;
18
(
6
):
291
-
297
.
41.
Haery
L
,
Thompson
RC
,
Gilmore
TD
.
Histone acetyltransferases and histone deacetylases in B-and T-cell development, physiology and malignancy
.
Genes Cancer
.
2015
;
6
(
5-6
):
184
-
213
.
42.
Bondarev
AD
,
Attwood
MM
,
Jonsson
J
,
Chubarev
VN
,
Tarasov
VV
,
Schiöth
HB
.
Recent developments of HDAC inhibitors: emerging indications and novel molecules
.
Br J Clin Pharmacol
.
2021
;
87
(
12
):
4577
-
4597
.
43.
Zhao
C
,
Dong
H
,
Xu
Q
,
Zhang
Y
.
Histone deacetylase (HDAC) inhibitors in cancer: a patent review (2017-present)
.
Expert Opin Ther patents
.
2020
;
30
(
4
):
263
-
274
.
44.
Yee
AJ
,
Bensinger
WI
,
Supko
JG
, et al
.
Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: a multicentre phase 1b trial
.
Lancet Oncol
.
2016
;
17
(
11
):
1569
-
1578
.
45.
Marmorstein
R
,
Zhou
M-M
.
Writers and readers of histone acetylation: structure, mechanism, and inhibition
.
Cold Spring Harbor Perspect Biol
.
2014
;
6
(
7
):
a018762
.
46.
Creyghton
MP
,
Cheng
AW
,
Welstead
GG
, et al
.
Histone H3K27ac separates active from poised enhancers and predicts developmental state
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
50
):
21931
-
21936
.
47.
Wu
T
,
Kamikawa
YF
,
Donohoe
ME
.
Brd4’s bromodomains mediate histone H3 acetylation and chromatin remodeling in pluripotent cells through P300 and Brg1
.
Cell Rep
.
2018
;
25
(
7
):
1756
-
1771
.
48.
Hnisz
D
,
Abraham
BJ
,
Lee
TI
, et al
.
Super-enhancers in the control of cell identity and disease
.
Cell
.
2013
;
155
(
4
):
934
-
947
.
49.
Sabari
BR
,
Dall’Agnese
A
,
Boija
A
, et al
.
Coactivator condensation at super-enhancers links phase separation and gene control
.
Science
.
2018
;
361
(
6400
):
eaar3958
.
50.
Mikulasova
A
,
Kent
D
,
Trevisan-Herraz
M
, et al
.
Epigenomic translocation of H3K4me3 broad domains over oncogenes following hijacking of super-enhancers
.
Genome Res
.
2022
;
32
(
7
):
1343
-
1354
.
51.
Thibodeau
A
,
Márquez
EJ
,
Shin
D-G
,
Vera-Licona
P
,
Ucar
D
.
Chromatin interaction networks revealed unique connectivity patterns of broad H3K4me3 domains and super enhancers in 3D chromatin
.
Sci Rep
.
2017
;
7
(
1
):
14466
.
52.
Affer
M
,
Chesi
M
,
Chen
W
, et al
.
Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma
.
Leukemia
.
2014
;
28
(
8
):
1725
-
1735
.
53.
Shou
Y
,
Martelli
ML
,
Gabrea
A
, et al
.
Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma
.
Proc Natl Acad Sci U S A
.
2000
;
97
(
1
):
228
-
233
.
54.
Gabrea
A
,
Martelli
ML
,
Qi
Y
, et al
.
Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors
.
Genes Chromosomes Cancer
.
2008
;
47
(
7
):
573
-
590
.
55.
Jia
Y
,
Zhou
J
,
Tan
TK
, et al
.
Myeloma-specific superenhancers affect genes of biological and clinical relevance in myeloma
.
Blood Cancer J
.
2021
;
11
(
2
):
32
.
56.
Jin
Y
,
Chen
K
,
De Paepe
A
, et al
.
Active enhancer and chromatin accessibility landscapes chart the regulatory network of primary multiple myeloma
.
Blood
.
2018
;
131
(
19
):
2138
-
2150
.
57.
Xiong
S
,
Zhou
J
,
Tan
TK
, et al
.
Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma
.
Nat Commun
.
2024
;
15
(
1
):
6810
.
58.
Kuo
AJ
,
Cheung
P
,
Chen
K
, et al
.
NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming
.
Mol Cell
.
2011
;
44
(
4
):
609
-
620
.
59.
Martinez-Garcia
E
,
Popovic
R
,
Min
D-J
, et al
.
The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t (4; 14) multiple myeloma cells
.
Blood
.
2011
;
117
(
1
):
211
-
220
.
60.
Lhoumaud
P
,
Badri
S
,
Rodriguez-Hernaez
J
, et al
.
NSD2 overexpression drives clustered chromatin and transcriptional changes in a subset of insulated domains
.
Nat Commun
.
2019
;
10
(
1
):
4843
.
61.
Jia
Y
,
Zhou
J
,
Tan
TK
, et al
.
Super enhancer-mediated upregulation of HJURP promotes growth and survival of t (4; 14)-positive multiple myeloma
.
Cancer Res
.
2022
;
82
(
3
):
406
-
418
.
62.
Katsarou
A
,
Trasanidis
N
,
Ponnusamy
K
, et al
.
MAF functions as a pioneer transcription factor that initiates and sustains myelomagenesis
.
Blood Adv
.
2023
;
7
(
21
):
6395
-
6410
.
63.
Liu
X
,
Wang
L
,
Zhao
K
, et al
.
The structural basis of protein acetylation by the p300/CBP transcriptional coactivator
.
Nature
.
2008
;
451
(
7180
):
846
-
850
.
64.
Wang
S
,
Zang
C
,
Xiao
T
, et al
.
Modeling cis-regulation with a compendium of genome-wide histone H3K27ac profiles
.
Genome Res
.
2016
;
26
(
10
):
1417
-
1429
.
65.
Raisner
R
,
Kharbanda
S
,
Jin
L
, et al
.
Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 acetylation
.
Cell Rep
.
2018
;
24
(
7
):
1722
-
1729
.
66.
Conery
AR
,
Centore
RC
,
Neiss
A
, et al
.
Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma [published correction appears in Elife. 2016:5:e19432]
.
Elife
.
2016
;
5
:
e10483
.
67.
Kalkhoven
E
.
CBP and p300: HATs for different occasions
.
Biochem Pharmacol
.
2004
;
68
(
6
):
1145
-
1155
.
68.
Wang
F
,
Marshall
CB
,
Ikura
M
.
Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition
.
Cell Mol Life Sci
.
2013
;
70
(
21
):
3989
-
4008
.
69.
Durbin
AD
,
Wang
T
,
Wimalasena
VK
, et al
.
EP300 selectively controls the enhancer landscape of MYCN-amplified neuroblastoma
.
Cancer Discov
.
2022
;
12
(
3
):
730
-
751
.
70.
Zucconi
BE
,
Makofske
JL
,
Meyers
DJ
, et al
.
Combination targeting of the bromodomain and acetyltransferase active site of p300/CBP
.
Biochemistry
.
2019
;
58
(
16
):
2133
-
2143
.
71.
Weinert
BT
,
Narita
T
,
Satpathy
S
, et al
.
Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome
.
Cell
.
2018
;
174
(
1
):
231
-
244.e12
.
72.
Zhang
Y
,
Xue
Y
,
Shi
J
, et al
.
The ZZ domain of p300 mediates specificity of the adjacent HAT domain for histone H3
.
Nat Struct Mol Biol
.
2018
;
25
(
9
):
841
-
849
.
73.
Nicosia
L
,
Spencer
GJ
,
Brooks
N
, et al
.
Therapeutic targeting of EP300/CBP by bromodomain inhibition in hematologic malignancies
.
Cancer Cell
.
2023
;
41
(
12
):
2136
-
2153.e13
.
74.
He
Z-X
,
Wei
B-F
,
Zhang
X
,
Gong
YP
,
Ma
LY
,
Zhao
W
.
Current development of CBP/p300 inhibitors in the last decade
.
Eur J Med Chem
.
2021
;
209
:
112861
.
75.
Ryan
KR
,
Giles
F
,
Morgan
GJ
.
Targeting both BET and CBP/EP300 proteins with the novel dual inhibitors NEO2734 and NEO1132 leads to anti-tumor activity in multiple myeloma
.
Eur J Haematol
.
2021
;
106
(
1
):
90
-
99
.
76.
Delmore
JE
,
Issa
GC
,
Lemieux
ME
, et al
.
BET bromodomain inhibition as a therapeutic strategy to target c-Myc
.
Cell
.
2011
;
146
(
6
):
904
-
917
.
77.
Hogg
SJ
,
Newbold
A
,
Vervoort
SJ
, et al
.
BET inhibition induces apoptosis in aggressive B-cell lymphoma via epigenetic regulation of BCL-2 family members
.
Mol Cancer Ther
.
2016
;
15
(
9
):
2030
-
2041
.
78.
Shaffer
AL
,
Emre
NCT
,
Lamy
L
, et al
.
IRF4 addiction in multiple myeloma
.
Nature
.
2008
;
454
(
7201
):
226
-
231
.
79.
Shah
V
,
Giotopoulos
G
,
Osaki
H
, et al
.
Acute resistance to BET inhibitors remodels compensatory transcriptional programs via p300 coactivation
.
Blood
.
2025
;
145
(
7
):
748
-
764
.
80.
Zhu
YX
,
Braggio
E
,
Shi
C-X
, et al
.
Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide
.
Blood
.
2011
;
118
(
18
):
4771
-
4779
.
81.
Neri
P
,
Barwick
BG
,
Jung
D
, et al
.
ETV4-dependent transcriptional plasticity maintains MYC expression and results in IMiD resistance in multiple myeloma
.
Blood Cancer Discov
.
2024
;
5
(
1
):
56
-
73
.
82.
Welsh
SJ
,
Barwick
BG
,
Meermeier
EW
, et al
.
Transcriptional heterogeneity overcomes super-enhancer disrupting drug combinations in multiple myeloma
.
Blood Cancer Discov
.
2024
;
5
(
1
):
34
-
55
.
83.
Hammitzsch
A
,
Tallant
C
,
Fedorov
O
, et al
.
CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
34
):
10768
-
10773
.
84.
Giotopoulos
G
,
Chan
WI
,
Horton
SJ
, et al
.
The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia
.
Oncogene
.
2016
;
35
(
3
):
279
-
289
.
85.
Smith
BE
,
Wang
SL
,
Jaime-Figueroa
S
, et al
.
Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase
.
Nat Commun
.
2019
;
10
(
1
):
131
.
86.
Guenette
RG
,
Yang
SW
,
Min
J
,
Pei
B
,
Potts
PR
.
Target and tissue selectivity of PROTAC degraders
.
Chem Soc Rev
.
2022
;
51
(
14
):
5740
-
5756
.
87.
Burslem
GM
,
Crews
CM
.
Proteolysis-targeting chimeras as therapeutics and tools for biological discovery
.
Cell
.
2020
;
181
(
1
):
102
-
114
.
88.
Thomas
JE
,
Wang
M
,
Jiang
W
, et al
.
Discovery of exceptionally potent, selective, and efficacious PROTAC degraders of CBP and p300 proteins
.
J Med Chem
.
2023
;
66
(
12
):
8178
-
8199
.
89.
Chang
Q
,
Li
J
,
Deng
Y
, et al
.
Discovery of novel PROTAC degraders of p300/CBP as potential therapeutics for hepatocellular carcinoma
.
J Med Chem
.
2024
;
67
(
4
):
2466
-
2486
.
90.
Schier
AC
,
Taatjes
DJ
.
Structure and mechanism of the RNA polymerase II transcription machinery
.
Genes Dev
.
2020
;
34
(
7-8
):
465
-
488
.
91.
Yang
Z
,
He
N
,
Zhou
Q
.
Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression
.
Mol Cell Biol
.
2008
;
28
(
3
):
967
-
976
.
92.
Sammak
S
,
Allen
MD
,
Hamdani
N
,
Bycroft
M
,
Zinzalla
G
.
The structure of INI 1/hSNF 5 RPT 1 and its interactions with the c-MYC: MAX heterodimer provide insights into the interplay between MYC and the SWI/SNF chromatin remodeling complex
.
FEBS J
.
2018
;
285
(
22
):
4165
-
4180
.
93.
Kurata
K
,
Samur
MK
,
Liow
P
, et al
.
BRD9 degradation disrupts ribosome biogenesis in multiple myeloma [published correction appears in Clin Cancer Res. 2024;30(17):3956]
.
Clin Cancer Res
.
2023
;
29
(
9
):
1807
-
1821
.
94.
Zhao
L
,
Okhovat
J-P
,
Hong
EK
,
Kim
YH
,
Wood
GS
.
Preclinical studies support combined inhibition of BET family proteins and histone deacetylases as epigenetic therapy for cutaneous T-cell lymphoma
.
Neoplasia
.
2019
;
21
(
1
):
82
-
92
.
95.
Siu
K
,
Ramachandran
J
,
Yee
A
, et al
.
Preclinical activity of CPI-0610, a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma
.
Leukemia
.
2017
;
31
(
8
):
1760
-
1769
.
96.
Mead
M
,
Von Euw
E
,
Conklin
D
, et al
.
Efficacy and mechanism of action of the novel bromodomain inhibitor, PLX51107, in B Cell malignancies
.
Blood
.
2015
;
126
(
23
):
3702
.
97.
Stubbs
MC
,
Burn
TC
,
Sparks
R
, et al
.
The novel bromodomain and extraterminal domain inhibitor INCB054329 induces vulnerabilities in myeloma cells that inform rational combination strategies
.
Clin Cancer Res
.
2019
;
25
(
1
):
300
-
311
.
98.
Piha-Paul
SA
,
Sachdev
JC
,
Barve
M
, et al
.
First-in-human study of mivebresib (ABBV-075), an oral pan-inhibitor of bromodomain and extra terminal proteins, in patients with relapsed/refractory solid tumors
.
Clin Cancer Res
.
2019
;
25
(
21
):
6309
-
6319
.
99.
Amorim
S
,
Stathis
A
,
Gleeson
M
, et al
.
Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study
.
Lancet Haematol
.
2016
;
3
(
4
):
e196
-
e204
.
100.
Berthon
C
,
Raffoux
E
,
Thomas
X
, et al
.
Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study
.
Lancet Haematol
.
2016
;
3
(
4
):
e186
-
e195
.
101.
Postel-Vinay
S
,
Herbschleb
K
,
Massard
C
, et al
.
First-in-human phase I study of the bromodomain and extraterminal motif inhibitor BAY 1238097: emerging pharmacokinetic/pharmacodynamic relationship and early termination due to unexpected toxicity
.
Eur J Cancer
.
2019
;
109
:
103
-
110
.
102.
Piha-Paul
SA
,
Hann
CL
,
French
CA
, et al
.
Phase 1 study of molibresib (GSK525762), a bromodomain and extra-terminal domain protein inhibitor, in NUT carcinoma and other solid tumors
.
JNCI Cancer Spectr
.
2020
;
4
(
2
):
pkz093
.
103.
Falchook
G
,
Rosen
S
,
LoRusso
P
, et al
.
Development of 2 bromodomain and extraterminal inhibitors with distinct pharmacokinetic and pharmacodynamic profiles for the treatment of advanced malignancies
.
Clin Cancer Res
.
2020
;
26
(
6
):
1247
-
1257
.
104.
Xu
L
,
Chen
Y
,
Mayakonda
A
, et al
.
Targetable BET proteins-and E2F1-dependent transcriptional program maintains the malignancy of glioblastoma
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
22
):
E5086
-
E5095
.
105.
Lu
J
,
Qian
Y
,
Altieri
M
, et al
.
Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4
.
Chem Biol
.
2015
;
22
(
6
):
755
-
763
.
106.
Zhang
X
,
Lee
HC
,
Shirazi
F
, et al
.
Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma
.
Leukemia
.
2018
;
32
(
10
):
2224
-
2239
.
107.
Singh
A
,
Modak
SB
,
Chaturvedi
MM
,
Purohit
JS
.
SWI/SNF chromatin remodelers: structural, functional and mechanistic implications
.
Cell Biochem Biophys
.
2023
;
81
(
2
):
167
-
187
.
108.
Basta
J
,
Rauchman
M
. The nucleosome remodeling and deacetylase complex in development and disease. In:
Laurence
J
,
Van Beusekom
M
, eds.
Translating Epigenetics to the Clinic
. 1st ed.
Academic Press
;
2017
:
37
-
72
.
109.
Gospodinov
A
,
Vaissiere
T
,
Krastev
DB
,
Legube
G
,
Anachkova
B
,
Herceg
Z
.
Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection [published correction appears in Mol Cell Biol. 2012;32(5):1030]
.
Mol Cell Biol
.
2011
;
31
(
23
):
4735
-
4745
.
110.
Vassileva
I
,
Yanakieva
I
,
Peycheva
M
,
Gospodinov
A
,
Anachkova
B
.
The mammalian INO80 chromatin remodeling complex is required for replication stress recovery
.
Nucleic Acids Res
.
2014
;
42
(
14
):
9074
-
9086
.
111.
Poli
J
,
Gasser
SM
,
Papamichos-Chronakis
M
.
The INO80 remodeller in transcription, replication and repair
.
Phil Trans R Soc B
.
2017
;
372
(
1731
):
20160290
.
112.
Cai
Y
,
Jin
J
,
Yao
T
, et al
.
YY1 functions with INO80 to activate transcription
.
Nat Struct Mol Biol
.
2007
;
14
(
9
):
872
-
874
.
113.
Zhou
CY
,
Stoddard
CI
,
Johnston
JB
, et al
.
Regulation of Rvb1/Rvb2 by a domain within the INO80 chromatin remodeling complex implicates the yeast Rvbs as protein assembly chaperones
.
Cell Rep
.
2017
;
19
(
10
):
2033
-
2044
.
114.
Mayes
K
,
Qiu
Z
,
Alhazmi
A
,
Landry
JW
.
ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy
.
Adv Cancer Res
.
2014
;
121
:
183
-
233
.
115.
Assimon
VA
,
Tang
Y
,
Vargas
JD
, et al
.
CB-6644 is a selective inhibitor of the RUVBL1/2 complex with anticancer activity
.
ACS Chem Biol
.
2019
;
14
(
2
):
236
-
244
.
116.
Wang
H
,
Li
B
,
Zuo
L
, et al
.
The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors
.
Nat Commun
.
2022
;
13
(
1
):
5703
.
117.
Torchy
MP
,
Hamiche
A
,
Klaholz
BP
.
Structure and function insights into the NuRD chromatin remodeling complex
.
Cell Mol Life Sci
.
2015
;
72
(
13
):
2491
-
2507
.
118.
Fujita
N
,
Jaye
DL
,
Geigerman
C
, et al
.
MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation
.
Cell
.
2004
;
119
(
1
):
75
-
86
.
119.
Yoshida
T
,
Yao-Ming Ng
S
,
Zuniga-Pflucker
JC
,
Georgopoulos
K
.
Early hematopoietic lineage restrictions directed by Ikaros
.
Nat Immunol
.
2006
;
7
(
4
):
382
-
391
.
120.
Hu
Y
,
Salgado Figueroa
D
,
Zhang
Z
, et al
.
Lineage-specific 3D genome organization is assembled at multiple scales by IKAROS
.
Cell
.
2023
;
186
(
24
):
5269
-
5289.e22
.
121.
Krönke
J
,
Udeshi
ND
,
Narla
A
, et al
.
Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells
.
Science
.
2014
;
343
(
6168
):
301
-
305
.
122.
Jovanović
K
,
Roche-Lestienne
C
,
Ghobrial
I
,
Facon
T
,
Quesnel
B
,
Manier
S
.
Targeting MYC in multiple myeloma
.
Leukemia
.
2018
;
32
(
6
):
1295
-
1306
.
123.
Dimopoulos
MA
,
Oriol
A
,
Nahi
H
, et al
.
Overall survival with daratumumab, lenalidomide, and dexamethasone in previously treated multiple myeloma (POLLUX): a randomized, open-label, phase III trial
.
J Clin Oncol
.
2023
;
41
(
8
):
1590
-
1599
.
124.
Fedele
PL
,
Willis
SN
,
Liao
Y
, et al
.
IMiDs prime myeloma cells for daratumumab-mediated cytotoxicity through loss of Ikaros and Aiolos
.
Blood
.
2018
;
132
(
20
):
2166
-
2178
.
125.
Sonneveld
P
,
Dimopoulos
MA
,
Boccadoro
M
, et al;
PERSEUS Trial Investigators
.
Daratumumab, bortezomib, lenalidomide, and dexamethasone for multiple myeloma
.
N Engl J Med Overseas Ed
.
2024
;
390
(
4
):
301
-
313
.
126.
Mashtalir
N
,
D’Avino
AR
,
Michel
BC
, et al
.
Modular organization and assembly of SWI/SNF family chromatin remodeling complexes
.
Cell
.
2018
;
175
(
5
):
1272
-
1288.e20
.
127.
Mashtalir
N
,
Dao
HT
,
Sankar
A
, et al
.
Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes
.
Science
.
2021
;
373
(
6552
):
306
-
315
.
128.
Bolomsky
A
,
Ceribelli
M
,
Scheich
S
, et al
.
IRF4 requires ARID1A to establish plasma cell identity in multiple myeloma
.
Cancer Cell
.
2024
;
42
(
7
):
1185
-
1201.e14
.
129.
He
T
,
Xiao
L
,
Qiao
Y
, et al
.
Targeting the mSWI/SNF complex in POU2F-POU2AF transcription factor-driven malignancies
.
Cancer Cell
.
2024
;
42
(
8
):
1336
-
1351.e9
.
130.
Chong
PS
,
Chooi
JY
,
Lim
JS
,
Toh
SHM
,
Tan
TZ
,
Chng
WJ
.
SMARCA2 is a novel interactor of NSD2 and regulates prometastatic PTP4A3 through chromatin remodeling in t (4; 14) multiple myeloma
.
Cancer Res
.
2021
;
81
(
9
):
2332
-
2344
.
131.
Yamamoto
J
,
Suwa
T
,
Murase
Y
, et al
.
ARID2 is a pomalidomide-dependent CRL4CRBN substrate in multiple myeloma cells
.
Nat Chem Biol
.
2020
;
16
(
11
):
1208
-
1217
.
132.
Martinez-Høyer
S
,
Karsan
A
.
Mechanisms of lenalidomide sensitivity and resistance
.
Exp Hematol
.
2020
;
91
:
22
-
31
.
133.
Fukumoto
T
,
Lin
J
,
Fatkhutdinov
N
, et al
.
ARID2 deficiency correlates with the response to immune checkpoint blockade in melanoma
.
J Invest Dermatol
.
2021
;
141
(
6
):
1564
-
1572.e4
.
134.
Pan
D
,
Kobayashi
A
,
Jiang
P
, et al
.
A major chromatin regulator determines resistance of tumor cells to T cell–mediated killing
.
Science
.
2018
;
359
(
6377
):
770
-
775
.
135.
Wilson
TS
,
Scaffidi
P
.
Compromised epigenetic robustness in cancer: fueling evolution, exposing weakness
.
Trends Cancer
.
2025
;
11
(
6
):
575
-
590
.
136.
Morel
D
,
Jeffery
D
,
Aspeslagh
S
,
Almouzni
G
,
Postel-Vinay
S
.
Combining epigenetic drugs with other therapies for solid tumours—past lessons and future promise
.
Nat Rev Clin Oncol
.
2020
;
17
(
2
):
91
-
107
.
137.
Gourisankar
S
,
Krokhotin
A
,
Ji
W
, et al
.
Rewiring cancer drivers to activate apoptosis [published correction appears in Nature. 2023;621(7977):E27]
.
Nature
.
2023
;
620
(
7973
):
417
-
425
.
138.
Malone
HA
,
Roberts
CW
.
Chromatin remodellers as therapeutic targets
.
Nat Rev Drug Discov
.
2024
;
23
(
9
):
661
-
681
.
139.
Wanior
M
,
Krämer
A
,
Knapp
S
,
Joerger
AC
.
Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy
.
Oncogene
.
2021
;
40
(
21
):
3637
-
3654
.
140.
Fu
X
,
Mo
S
,
Buendia
A
, et al
.
A foundation model of transcription across human cell types
.
Nature
.
2025
;
637
(
8047
):
965
-
973
.
141.
Consens
ME
,
Dufault
C
,
Wainberg
M
, et al
.
Transformers and genome language models
.
Nat Mach Intell
.
2025
;
7
(
3
):
346
-
362
.
You do not currently have access to this content.
Sign in via your Institution