Abstract

The pathogenesis of multiple myeloma (MM) and its precursor monoclonal gammopathy of undetermined significance (MGUS) is linked to an aging immune system. Chronic activation of B/plasma cells may contribute to the origin of MGUS, which is frequent in the older individuals. However, only 1% of individuals with MGUS annually experience progression to MM. The immune system can specifically recognize MGUS lesions, and preclinical MM models provide evidence for both innate and adaptive immune surveillance. Multiomic studies have identified several systemic alterations at the MGUS stage, suggesting accelerated immune aging prior to evolution into clinical malignancy. MM is further associated with spatial alterations in patterns of tumor growth and in situ regulation of regional immunity. Both tumor and microenvironment-related factors contribute to immune paresis, which facilitates the dissemination of clonal plasma cells, and increases the risk of infections in patients with MM. Immune profiles in blood or marrow exhibit considerable heterogeneity, and have been linked to outcomes following immune therapies, including T-cell redirection. Understanding how underlying systemic immune changes impact in vivo function and durability of natural or synthetic tumor/antigen-specific immunity needs further study. Preserving or restoring immune function may be critical for long-term outcomes both in the context of prevention of clinical MM and of treating active disease. Benchmarking of immune biomarkers followed by its prospective integration into current risk models, together with improved understanding of mechanisms underlying tumor immunity in vivo, are needed to optimize immune approaches and improve outcomes in MM.

1.
Kumar
SK
,
Rajkumar
V
,
Kyle
RA
, et al
.
Multiple myeloma
.
Nat Rev Dis Primers
.
2017
;
3
:
17046
.
2.
Dhodapkar
MV
.
The immune system in multiple myeloma and precursor states: lessons and implications for immunotherapy and interception
.
Am J Hematol
.
2023
;
98
(
suppl 2
):
S4
-
S12
.
3.
Dhodapkar
MV
.
MGUS to myeloma: a mysterious gammopathy of underexplored significance
.
Blood
.
2016
;
128
(
23
):
2599
-
2606
.
4.
Oben
B
,
Froyen
G
,
Maclachlan
KH
, et al
.
Whole-genome sequencing reveals progressive versus stable myeloma precursor conditions as two distinct entities
.
Nat Commun
.
2021
;
12
(
1
):
1861
.
5.
Mikulasova
A
,
Wardell
CP
,
Murison
A
, et al
.
The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma
.
Haematologica
.
2017
;
102
(
9
):
1617
-
1625
.
6.
Smyth
MJ
,
Dunn
GP
,
Schreiber
RD
.
Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity
.
Adv Immunol
.
2006
;
90
:
1
-
50
.
7.
Dhodapkar
MV
,
Krasovsky
J
,
Osman
K
,
Geller
MD
.
Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with preneoplastic gammopathy
.
J Exp Med
.
2003
;
198
(
11
):
1753
-
1757
.
8.
Finn
OJ
.
Premalignant lesions as targets for cancer vaccines
.
J Exp Med
.
2003
;
198
(
11
):
1623
-
1626
.
9.
Dhodapkar
MV
,
Krasovsky
J
,
Osman
K
,
Geller
MD
.
Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy
.
J Exp Med
.
2003
;
198
(
11
):
1753
-
1757
.
10.
Spisek
R
,
Kukreja
A
,
Chen
LC
, et al
.
Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy
.
J Exp Med
.
2007
;
204
(
4
):
831
-
840
.
11.
Goodyear
OC
,
Pratt
G
,
McLarnon
A
,
Cook
M
,
Piper
K
,
Moss
P
.
Differential pattern of CD4+ and CD8+ T-cell immunity to MAGE-A1/A2/A3 in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma
.
Blood
.
2008
;
112
(
8
):
3362
-
3372
.
12.
Dhodapkar
MV
,
Sexton
R
,
Das
R
, et al
.
Prospective analysis of antigen-specific immunity, stem-cell antigens, and immune checkpoints in monoclonal gammopathy
.
Blood
.
2015
;
126
(
22
):
2475
-
2478
.
13.
Dhodapkar
MV
,
Krasovsky
J
,
Olson
K
.
T cells from the tumor microenvironment of patients with progressive myeloma can generate strong tumor specific cytolytic responses to autologous tumor loaded dendritic cells
.
Proc Natl Acad Sci USA
.
2002
;
99
(
20
):
13 009
-
13 013
.
14.
Noonan
K
,
Matsui
W
,
Serafini
P
, et al
.
Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors
.
Cancer Res
.
2005
;
65
(
5
):
2026
-
2034
.
15.
Kini Bailur
J
,
Mehta
S
,
Zhang
L
, et al
.
Changes in bone marrow innate lymphoid cell subsets in monoclonal gammopathy: target for IMiD therapy
.
Blood Adv
.
2017
;
1
(
25
):
2343
-
2347
.
16.
Guillerey
C
,
Ferrari de Andrade
L
,
Vuckovic
S
, et al
.
Immunosurveillance and therapy of multiple myeloma are CD226 dependent
.
J Clin Invest
.
2015
;
125
(
7
):
2904
.
17.
Corthay
A
,
Skovseth
DK
,
Lundin
KU
, et al
.
Primary antitumor immune response mediated by CD4+ T cells
.
Immunity
.
2005
;
22
(
3
):
371
-
383
.
18.
Larrayoz
M
,
Garcia-Barchino
MJ
,
Celay
J
, et al
.
Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma
.
Nat Med
.
2023
;
29
(
3
):
632
-
645
.
19.
Das
R
,
Strowig
T
,
Verma
R
, et al
.
Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice
.
Nat Med
.
2016
;
22
(
11
):
1351
-
1357
.
20.
Khoo
WH
,
Ledergor
G
,
Weiner
A
, et al
.
A niche-dependent myeloid transcriptome signature defines dormant myeloma cells
.
Blood
.
2019
;
134
(
1
):
30
-
43
.
21.
Bailur
JK
,
McCachren
SS
,
Doxie
DB
, et al
.
Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy
.
JCI Insight
.
2019
;
5
(
11
):
e127807
.
22.
Boiarsky
R
,
Haradhvala
NJ
,
Alberge
JB
, et al
.
Single cell characterization of myeloma and its precursor conditions reveals transcriptional signatures of early tumorigenesis
.
Nat Commun
.
2022
;
13
(
1
):
7040
.
23.
Zavidij
O
,
Haradhvala
NJ
,
Mouhieddine
TH
, et al
.
Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma
.
Nat Cancer
.
2020
;
1
(
5
):
493
-
506
.
24.
Schinke
C
,
Poos
AM
,
Bauer
M
, et al
.
Characterizing the role of the immune microenvironment in multiple myeloma progression at a single-cell level
.
Blood Adv
.
2022
;
6
(
22
):
5873
-
5883
.
25.
de Jong
MME
,
Kellermayer
Z
,
Papazian
N
, et al
.
The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape
.
Nat Immunol
.
2021
;
22
(
6
):
769
-
780
.
26.
Joshua
DE
,
Vuckovic
S
,
Favaloro
J
, et al
.
Treg and oligoclonal expansion of terminal effector CD8+ T cell as key players in multiple myeloma
.
Front Immunol
.
2021
;
12
:
620596
.
27.
Botta
C
,
Perez
C
,
Larrayoz
M
, et al
.
Large T cell clones expressing immune checkpoints increase during multiple myeloma evolution and predict treatment resistance
.
Nat Commun
.
2023
;
14
(
1
):
5825
.
28.
Vuckovic
S
,
Bryant
CE
,
Lau
KHA
, et al
.
Inverse relationship between oligoclonal expanded CD69- TTE and CD69+ TTE cells in bone marrow of multiple myeloma patients
.
Blood Adv
.
2020
;
4
(
19
):
4593
-
4604
.
29.
Dhodapkar
KM
,
Barbuto
S
,
Matthews
P
, et al
.
Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma
.
Blood
.
2008
;
112
(
7
):
2878
-
2885
.
30.
Prabhala
RH
,
Pelluru
D
,
Fulciniti
M
, et al
.
Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma
.
Blood
.
2010
;
115
(
26
):
5385
-
5392
.
31.
Noonan
K
,
Marchionni
L
,
Anderson
J
,
Pardoll
D
,
Roodman
GD
,
Borrello
I
.
A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma
.
Blood
.
2010
;
116
(
18
):
3554
-
3563
.
32.
Chung
DJ
,
Pronschinske
KB
,
Shyer
JA
, et al
.
T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy
.
Cancer Immunol Res
.
2016
;
4
(
1
):
61
-
71
.
33.
Minnie
SA
,
Waltner
OG
,
Zhang
P
, et al
.
TIM-3+ CD8 T cells with a terminally exhausted phenotype retain functional capacity in hematological malignancies
.
Sci Immunol
.
2024
;
9
(
94
):
eadg1094
.
34.
Potdar
SV
,
Kapadia
S
,
Azeem
MI
, et al
.
Immune-aging is linked to clinical malignancy, racial ancestry and vaccine responses in myeloma
.
Blood Adv
.
2025
;
9
(
10
):
2438
-
2442
.
35.
Welters
C
,
Lammoglia Cobo
MF
,
Stein
CA
, et al
.
Immune phenotypes and target antigens of clonally expanded bone marrow T cells in treatment-naive multiple myeloma
.
Cancer Immunol Res
.
2022
;
10
(
11
):
1407
-
1419
.
36.
Foster
KA
,
Rees
E
,
Ainley
L
, et al
.
Tumour-intrinsic features shape T-cell differentiation through myeloma disease evolution
.
Blood
.
2024
;
144
(
suppl 1
):
669
.
37.
Bengsch
B
,
Ohtani
T
,
Khan
O
, et al
.
Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells
.
Immunity
.
2018
;
48
(
5
):
1029
-
1045.e5
.
38.
Mogilenko
DA
,
Shpynov
O
,
Andhey
PS
, et al
.
Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging
.
Immunity
.
2021
;
54
(
1
):
99
-
115.e12
.
39.
Azeem
MI
,
Nooka
AK
,
Shanmugasundaram
U
, et al
.
Impaired SARS-CoV-2 variant neutralization and CD8+ T-cell responses following 3 doses of mRNA vaccines in myeloma: correlation with breakthrough infections
.
Blood Cancer Discov
.
2023
;
4
(
2
):
106
-
117
.
40.
Dhodapkar
MV
,
Dhodapkar
KM
.
Tissue-resident memory-like T cells in tumor immunity: clinical implications
.
Semin Immunol
.
2020
;
49
:
101415
.
41.
Robinson
MH
,
Villa
NY
,
Jaye
DL
, et al
.
Regulation of antigen-specific T cell infiltration and spatial architecture in multiple myeloma and premalignancy
.
J Clin Invest
.
2023
;
133
(
15
):
e167629
.
42.
Cheung
KJ
,
Gabrielson
E
,
Werb
Z
,
Ewald
AJ
.
Collective invasion in breast cancer requires a conserved basal epithelial program
.
Cell
.
2013
;
155
(
7
):
1639
-
1651
.
43.
Dhodapkar
MV
.
Immune status and selection of patients for immunotherapy in myeloma: a proposal
.
Blood Adv
.
2024
;
8
(
10
):
2424
-
2432
.
44.
Lutz
R
,
Poos
AM
,
Solé-Boldo
L
, et al
.
Bone marrow breakout lesions act as key sites for tumor-immune cell diversification in multiple myeloma
.
Sci Immunol
.
2025
;
10
(
104
):
eadp6667
.
45.
John
M
,
Helal
M
,
Duell
J
, et al
.
Spatial transcriptomics reveals profound subclonal heterogeneity and T-cell dysfunction in extramedullary myeloma
.
Blood
.
2024
;
144
(
20
):
2121
-
2135
.
46.
Paiva
B
,
Pérez-Andrés
M
,
Vídriales
MB
, et al
.
Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma
.
Leukemia
.
2011
;
25
(
4
):
697
-
706
.
47.
Paiva
B
,
Azpilikueta
A
,
Puig
N
, et al
.
PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma
.
Leukemia
.
2015
;
29
(
10
):
2110
-
2113
.
48.
Liu
J
,
Hamrouni
A
,
Wolowiec
D
, et al
.
Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-TRAF6-and MEK-dependent pathway
.
Blood
.
2007
;
110
(
1
):
296
-
304
.
49.
Yousef
S
,
Marvin
J
,
Steinbach
M
, et al
.
Immunomodulatory molecule PD-L1 is expressed on malignant plasma cells and myeloma-propagating pre-plasma cells in the bone marrow of multiple myeloma patients
.
Blood Cancer J
.
2015
;
5
(
3
):
e285
.
50.
Costa
F
,
Das
R
,
Kini Bailur
J
,
Dhodapkar
K
,
Dhodapkar
MV
.
Checkpoint inhibition in myeloma: opportunities and challenges
.
Front Immunol
.
2018
;
9
:
2204
.
51.
Richard
S
,
Lesokhin
AM
,
Paul
B
, et al
.
Clinical response and pathway-specific correlates following TIGIT-LAG3 blockade in myeloma: the MyCheckpoint randomized clinical trial
.
Nat Cancer
.
2024
;
5
(
10
):
1459
-
1464
.
52.
Nakamura
K
,
Kassem
S
,
Cleynen
A
, et al
.
Dysregulated IL-18 is a key driver of immunosuppression and a possible therapeutic target in the multiple myeloma microenvironment
.
Cancer Cell
.
2018
;
33
(
4
):
634
-
648.e5
.
53.
Akhmetzyanova
I
,
Aaron
T
,
Galbo
P
, et al
.
Tissue-resident macrophages promote early dissemination of multiple myeloma via IL-6 and TNFα
.
Blood Adv
.
2021
;
5
(
18
):
3592
-
3608
.
54.
Hayashi
T
,
Hideshima
T
,
Nguyen
AN
, et al
.
Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment
.
Clin Cancer Res
.
2004
;
10
(
22
):
7540
-
7546
.
55.
Wang
S
,
Yang
J
,
Qian
J
,
Wezeman
M
,
Kwak
LW
,
Yi
Q
.
Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma
.
Blood
.
2006
;
107
(
6
):
2432
-
2439
.
56.
Brimnes
MK
,
Vangsted
AJ
,
Knudsen
LM
, et al
.
Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR−/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma
.
Scand J Immunol
.
2010
;
72
(
6
):
540
-
547
.
57.
Guillerey
C
,
Nakamura
K
,
Vuckovic
S
,
Hill
GR
,
Smyth
MJ
.
Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies
.
Cell Mol Life Sci
.
2016
;
73
(
8
):
1569
-
1589
.
58.
Alrasheed
N
,
Lee
L
,
Ghorani
E
, et al
.
Marrow-infiltrating regulatory T cells correlate with the presence of dysfunctional CD4+PD-1+ cells and inferior survival in patients with newly diagnosed multiple myeloma
.
Clin Cancer Res
.
2020
;
26
(
13
):
3443
-
3454
.
59.
Prabhala
RH
,
Neri
P
,
Bae
JE
, et al
.
Dysfunctional T regulatory cells in multiple myeloma
.
Blood
.
2006
;
107
(
1
):
301
-
304
.
60.
Tai
YT
,
Lin
L
,
Xing
L
, et al
.
APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications
.
Leukemia
.
2019
;
33
(
2
):
426
-
438
.
61.
Tai
YT
,
Cho
SF
,
Anderson
KC
.
Osteoclast immunosuppressive effects in multiple myeloma: role of programmed cell death ligand 1
.
Front Immunol
.
2018
;
9
:
1822
.
62.
Wu
X
,
Wang
Y
,
Xu
J
,
Luo
T
,
Deng
J
,
Hu
Y
.
MM-BMSCs induce naive CD4+ T lymphocytes dysfunction through fibroblast activation protein α
.
Oncotarget
.
2017
;
8
(
32
):
52 614
-
52 628
.
63.
Pilcher
WC
,
Yao
L
,
Gonzalez-Kozlova
E
, et al
.
A single-cell atlas characterizes dysregulation of the bone marrow immune microenvironment associated with outcomes in multiple myeloma
.
bioRxiv
.
Preprint posted online 17 May 2024
.
64.
Lutz
R
,
Grünschläger
F
,
Simon
M
, et al
.
Multiple myeloma long-term survivors exhibit sustained immune alterations decades after first-line therapy
.
Nat Commun
.
2024
;
15
(
1
):
10 396
.
65.
Asimakopoulos
F
,
Hope
C
,
Johnson
MG
,
Pagenkopf
A
,
Gromek
K
,
Nagel
B
.
Extracellular matrix and the myeloid-in-myeloma compartment: balancing tolerogenic and immunogenic inflammation in the myeloma niche
.
J Leukoc Biol
.
2017
;
102
(
2
):
265
-
275
.
66.
Zheng
Y
,
Cai
Z
,
Wang
S
, et al
.
Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis
.
Blood
.
2009
;
114
(
17
):
3625
-
3628
.
67.
Kim
D
,
Wang
J
,
Willingham
SB
,
Martin
R
,
Wernig
G
,
Weissman
IL
.
Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells
.
Leukemia
.
2012
;
26
(
12
):
2538
-
2545
.
68.
Leone
P
,
Berardi
S
,
Frassanito
MA
, et al
.
Dendritic cells accumulate in the bone marrow of myeloma patients where they protect tumor plasma cells from CD8+ T-cell killing
.
Blood
.
2015
;
126
(
12
):
1443
-
1451
.
69.
Ramachandran
IR
,
Martner
A
,
Pisklakova
A
, et al
.
Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow
.
J Immunol
.
2013
;
190
(
7
):
3815
-
3823
.
70.
Chauhan
D
,
Singh
AV
,
Brahmandam
M
, et al
.
Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target
.
Cancer Cell
.
2009
;
16
(
4
):
309
-
323
.
71.
Knight
A
,
Rihova
L
,
Kralova
R
, et al
.
Plasmacytoid dendritic cells in patients with MGUS and multiple myeloma
.
J Clin Med
.
2021
;
10
(
16
):
3717
.
72.
Malek
E
,
de Lima
M
,
Letterio
JJ
, et al
.
Myeloid-derived suppressor cells: the green light for myeloma immune escape
.
Blood Rev
.
2016
;
30
(
5
):
341
-
348
.
73.
Görgün
GT
,
Whitehill
G
,
Anderson
JL
, et al
.
Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans
.
Blood
.
2013
;
121
(
15
):
2975
-
2987
.
74.
Serafini
P
,
Meckel
K
,
Kelso
M
, et al
.
Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function
.
J Exp Med
.
2006
;
203
(
12
):
2691
-
2702
.
75.
Hope
C
,
Foulcer
S
,
Jagodinsky
J
, et al
.
Immunoregulatory roles of versican proteolysis in the myeloma microenvironment
.
Blood
.
2016
;
128
(
5
):
680
-
685
.
76.
Jinushi
M
,
Vanneman
M
,
Munshi
NC
, et al
.
MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma
.
Proc Natl Acad Sci USA
.
2008
;
105
(
4
):
1285
-
1290
.
77.
Neparidze
N
,
Dhodapkar
MV
.
Harnessing CD1d-restricted T cells toward antitumor immunity in humans
.
Ann N Y Acad Sci
.
2009
;
1174
:
61
-
67
.
78.
Dhodapkar
MV
,
Geller
MD
,
Chang
DH
, et al
.
A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma
.
J Exp Med
.
2003
;
197
(
12
):
1667
-
1676
.
79.
Cohen
AD
,
Raje
N
,
Fowler
JA
,
Mezzi
K
,
Scott
EC
,
Dhodapkar
MV
.
How to train your T cells: overcoming immune dysfunction in multiple myeloma
.
Clin Cancer Res
.
2020
;
26
(
7
):
1541
-
1554
.
80.
Lancman
G
,
Sastow
DL
,
Cho
HJ
, et al
.
Bispecific antibodies in multiple myeloma: present and future
.
Blood Cancer Discov
.
2021
;
2
(
5
):
423
-
433
.
81.
Robinson
MVN
,
Jaye
D
,
Nooka
A
,
Duffy
A
, et al
.
Regulation of antigen-specific T-cell infiltration and spatial architecture in myeloma and premalignancy
.
J Clin Invest
.
2023
;
133
(
15
):
e167629
.
82.
John
M
,
Helal
M
,
Duell
J
, et al
.
Spatial transcriptomics reveals profound subclonal heterogeneity and T-cell dysfunction in extramedullary myeloma
.
Blood
.
2024
;
144
(
20
):
2121
-
2135
.
83.
Rade
M
,
Grieb
N
,
Weiss
R
, et al
.
Single-cell multiomic dissection of response and resistance to chimeric antigen receptor T cells against BCMA in relapsed multiple myeloma
.
Nat Cancer
.
2024
;
5
(
9
):
1318
-
1333
.
84.
Schinke
C
,
Weinhold
N
.
The immune microenvironment in multiple myeloma progression at a single-cell level
.
Hemasphere
.
2023
;
7
(
6
):
e894
.
85.
Pilcher
W
,
Thomas
BE
,
Bhasin
SS
, et al
.
Cross center single-cell RNA sequencing study of the immune microenvironment in rapid progressing multiple myeloma
.
NPJ Genom Med
.
2023
;
8
(
1
):
3
.
86.
Yao
L
,
Jayasinghe
RG
,
Lee
BH
, et al
.
Comprehensive characterization of the multiple myeloma immune microenvironment using integrated scRNA-seq, CyTOF, and CITE-seq analysis
.
Cancer Res Commun
.
2022
;
2
(
10
):
1255
-
1265
.
87.
Adams
HC
,
Stevenaert
F
,
Krejcik
J
, et al
.
High-parameter mass cytometry evaluation of relapsed/refractory multiple myeloma patients treated with daratumumab demonstrates immune modulation as a novel mechanism of action
.
Cytometry A
.
2019
;
95
(
3
):
279
-
289
.
88.
Friedrich
MJ
,
Neri
P
,
Kehl
N
, et al
.
The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients
.
Cancer Cell
.
2023
;
41
(
4
):
711
-
725.e6
.
89.
Dhodapkar
KM
,
Cohen
AD
,
Kaushal
A
, et al
.
Changes in bone marrow tumor and immune cells correlate with durability of remissions following BCMA CAR T therapy in myeloma
.
Blood Cancer Discov
.
2022
;
3
(
6
):
490
-
501
.
90.
Ledergor
G
,
Fan
Z
,
Wu
K
, et al
.
CD4+ CAR-T cell exhaustion associated with early relapse of multiple myeloma after BCMA CAR-T cell therapy
.
Blood Adv
.
2024
;
8
(
13
):
3562
-
3575
.
91.
Coffey
DG
,
Ataca Atilla
P
,
Atilla
E
, et al
.
Single-cell analysis of the multiple myeloma microenvironment after gamma-secretase inhibition and CAR T-cell therapy
.
Blood
.
2025
;
145
(
2
):
220
-
233
.
92.
Rustad
EH
,
Yellapantula
V
,
Leongamornlert
D
, et al
.
Timing the initiation of multiple myeloma
.
Nat Commun
.
2020
;
11
(
1
):
1917
.
93.
Maura
F
,
Rustad
EH
,
Yellapantula
V
, et al
.
Role of AID in the temporal pattern of acquisition of driver mutations in multiple myeloma
.
Leukemia
.
2020
;
34
(
5
):
1476
-
1480
.
94.
Koduru
S
,
Wong
E
,
Strowig
T
, et al
.
Dendritic cell-mediated activation-induced cytidine deaminase (AID)-dependent induction of genomic instability in human myeloma
.
Blood
.
2012
;
119
(
10
):
2302
-
2309
.
95.
Weinreb
NJ
,
Mistry
PK
,
Rosenbloom
BE
,
Dhodapkar
MV
.
MGUS, lymphoplasmacytic malignancies, and Gaucher disease: the significance of the clinical association
.
Blood
.
2018
;
131
(
22
):
2500
-
2501
.
96.
Nair
S
,
Branagan
AR
,
Liu
J
,
Boddupalli
CS
,
Mistry
PK
,
Dhodapkar
MV
.
Clonal immunoglobulin against lysolipids in the origin of myeloma
.
N Engl J Med
.
2016
;
374
(
6
):
555
-
561
.
97.
Nair
S
,
Sng
J
,
Boddupalli
CS
, et al
.
Antigen-mediated regulation in monoclonal gammopathies and myeloma
.
JCI Insight
.
2018
;
3
(
8
):
e98259
.
98.
Claflin
JL
,
Rudikoff
S
,
Potter
M
,
Davie
JM
.
Structural, functional, and idiotypic characteristics of a phosphorylcholine-binding IgA myeloma protein of C57BL/ka allotype
.
J Exp Med
.
1975
;
141
(
3
):
608
-
619
.
99.
Chesi
M
,
Robbiani
DF
,
Sebag
M
, et al
.
AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies
.
Cancer Cell
.
2008
;
13
(
2
):
167
-
180
.
100.
Nair
S
,
Bar
N
,
Xu
ML
,
Dhodapkar
M
,
Mistry
PK
.
Glucosylsphingosine but not Saposin C, is the target antigen in Gaucher disease-associated gammopathy
.
Mol Genet Metab
.
2020
;
129
(
4
):
286
-
291
.
101.
Pavlova
EV
,
Archer
J
,
Wang
S
, et al
.
Inhibition of UDP-glucosylceramide synthase in mice prevents Gaucher disease-associated B-cell malignancy
.
J Pathol
.
2015
;
235
(
1
):
113
-
124
.
102.
Barley
K
,
Parekh
A
,
Salam
S
, et al
.
Regression of smoldering myeloma with treatment of Gaucher disease
.
Blood Adv
.
2024
;
8
(
7
):
1634
-
1638
.
103.
Calcinotto
A
,
Brevi
A
,
Chesi
M
, et al
.
Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression
.
Nat Commun
.
2018
;
9
(
1
):
4832
.
104.
Maura
F
,
Diamond
B
,
Maclachlan
KH
, et al
.
Initial whole-genome sequencing of plasma cell neoplasms in first responders and recovery workers exposed to the World Trade Center attack of September 11, 2001
.
Clin Cancer Res
.
2021
;
27
(
7
):
2111
-
2118
.
105.
El-Khoury
H
,
Lee
DJ
,
Alberge
JB
, et al
.
Prevalence of monoclonal gammopathies and clinical outcomes in a high-risk US population screened by mass spectrometry: a multicentre cohort study
.
Lancet Haematol
.
2022
;
9
(
5
):
e340
-
e349
.
106.
Went
M
,
Duran-Lozano
L
,
Halldorsson
GH
, et al
.
Deciphering the genetics and mechanisms of predisposition to multiple myeloma
.
Nat Commun
.
2024
;
15
(
1
):
6644
.
107.
Chen
JW
,
Rice
TA
,
Bannock
JM
, et al
.
Autoreactivity in I human fetal B cells is associated with commensal bacteria recognition
.
Science
.
2020
;
369
(
6501
):
320
-
325
.
108.
Myles
A
,
Sanz
I
,
Cancro
MP
.
T-bet+ B cells: a common denominator in protective and autoreactive antibody responses?
.
Curr Opin Immunol
.
2019
;
57
:
40
-
45
.
109.
Naradikian
MS
,
Hao
Y
,
Cancro
MP
.
Age-associated B cells: key mediators of both protective and autoreactive humoral responses
.
Immunol Rev
.
2016
;
269
(
1
):
118
-
129
.
110.
Ramiro
AR
,
Jankovic
M
,
Eisenreich
T
, et al
.
AID is required for c-myc/IgH chromosome translocations in vivo
.
Cell
.
2004
;
118
(
4
):
431
-
438
.
111.
Dhodapkar
MV
,
Sexton
R
,
Hoering
A
,
Van Rhee
F
,
Barlogie
B
,
Orlowski
R
.
Race-dependent differences in risk, genomics, and Epstein-Barr virus exposure in monoclonal gammopathies: results of SWOG S0120
.
Clin Cancer Res
.
2020
;
26
(
22
):
5814
-
5819
.
112.
Bosseboeuf
A
,
Feron
D
,
Tallet
A
, et al
.
Monoclonal IgG in MGUS and multiple myeloma targets infectious pathogens
.
JCI Insight
.
2017
;
2
(
19
):
e95367
.
113.
Gelli
E
,
Martinuzzi
C
,
Soncini
D
, et al
.
Clonal hematopoiesis impacts frailty in newly diagnosed multiple myeloma patients: a retrospective multicenter analysis
.
Sci Rep
.
2024
;
14
(
1
):
29394
.
114.
Kaushal
A
,
Nooka
AK
,
Carr
AR
, et al
.
Aberrant extrafollicular B cells, immune dysfunction, myeloid inflammation, and MyD88-mutant progenitors precede Waldenstrom macroglobulinemia
.
Blood Cancer Discov
.
2021
;
2
(
6
):
600
-
615
.
115.
Rodriguez
S
,
Celay
J
,
Goicoechea
I
, et al
.
Preneoplastic somatic mutations including MYD88L265P in lymphoplasmacytic lymphoma
.
Sci Adv
.
2022
;
8
(
3
):
eabl4644
.
116.
Dimopoulos
MA
,
Voorhees
PM
,
Schjesvold
F
, et al
.
Daratumumab or active monitoring for high-risk smoldering multiple myeloma
.
N Engl J Med
.
2025
;
392
(
18
):
1777
-
1788
.
117.
Mateos
MV
,
Hernández
MT
,
Giraldo
P
, et al
.
Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma
.
N Engl J Med
.
2013
;
369
(
5
):
438
-
447
.
118.
Lonial
S
,
Jacobus
S
,
Fonseca
R
, et al
.
Randomized trial of lenalidomide versus observation in smoldering multiple myeloma
.
J Clin Oncol
.
2020
;
38
(
11
):
1126
-
1137
.
119.
Sklavenitis-Pistofidis
R
,
Aranha
MP
,
Redd
RA
, et al
.
Immune biomarkers of response to immunotherapy in patients with high-risk smoldering myeloma
.
Cancer Cell
.
2022
;
40
(
11
):
1358
-
1373.e8
.
120.
Paiva
B
,
Mateos
MV
,
Sanchez-Abarca
LI
, et al
.
Immune status of high-risk smoldering multiple myeloma patients and its therapeutic modulation under LenDex: a longitudinal analysis
.
Blood
.
2016
;
127
(
9
):
1151
-
1162
.
121.
Dang
M
,
Wang
R
,
Lee
HC
, et al
.
Single cell clonotypic and transcriptional evolution of multiple myeloma precursor disease
.
Cancer Cell
.
2023
;
41
(
6
):
1032
-
1047.e4
.
122.
Nadeem
O
,
Aranha
MP
,
Redd
R
, et al
.
Long-term follow-up defines the population that benefits from early interception in a high-risk smoldering multiple myeloma clinical trial using the combination of ixazomib, lenalidomide, and dexamethasone
.
medRxiv
.
Preprint posted online 19 April 2024
.
123.
Termini
R
,
Žihala
D
,
Terpos
E
, et al
.
Circulating tumor and immune cells for minimally invasive risk stratification of smoldering multiple myeloma
.
Clin Cancer Res
.
2022
;
28
(
21
):
4771
-
4781
.
124.
Guerrero
C
,
Puig
N
,
Cedena
MT
, et al
.
A machine learning model based on tumor and immune biomarkers to predict undetectable MRD and survival outcomes in multiple myeloma
.
Clin Cancer Res
.
2022
;
28
(
12
):
2598
-
2609
.
125.
Coffey
DG
,
Maura
F
,
Gonzalez-Kozlova
E
, et al
.
Immunophenotypic correlates of sustained MRD negativity in patients with multiple myeloma
.
Nat Commun
.
2023
;
14
(
1
):
5335
.
126.
Zhaoyun
L
,
Rong
F
.
Predictive role of immune profiling for survival of multiple myeloma patients
.
Front Immunol
.
2021
;
12
:
663748
.
127.
Perez
C
,
Botta
C
,
Zabaleta
A
, et al
.
Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma
.
Blood
.
2020
;
136
(
2
):
199
-
209
.
128.
de Jong
MME
,
Fokkema
C
,
Papazian
N
, et al
.
An IL-1β-driven neutrophil-stromal cell axis fosters a BAFF-rich protumor microenvironment in individuals with multiple myeloma
.
Nat Immunol
.
2024
;
25
(
5
):
820
-
833
.
129.
García-Sanz
R
,
González
M
,
Orfão
A
, et al
.
Analysis of natural killer-associated antigens in peripheral blood and bone marrow of multiple myeloma patients and prognostic implications
.
Br J Haematol
.
1996
;
93
(
1
):
81
-
88
.
130.
Pessoa de Magalhães
RJ
,
Vidriales
MB
,
Paiva
B
, et al
.
Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry
.
Haematologica
.
2013
;
98
(
1
):
79
-
86
.
131.
Schütt
P
,
Brandhorst
D
,
Stellberg
W
, et al
.
Immune parameters in multiple myeloma patients: influence of treatment and correlation with opportunistic infections
.
Leuk Lymphoma
.
2006
;
47
(
8
):
1570
-
1582
.
132.
Blanquart
E
,
Ekren
R
,
Rigaud
B
, et al
.
NK cells with adhesion defects and reduced cytotoxic functions are associated with a poor prognosis in multiple myeloma
.
Blood
.
2024
;
144
(
12
):
1271
-
1283
.
133.
Korst
C
,
Tahri
S
,
Duetz
C
, et al
.
The bone marrow NK cell profile predicts MRD negativity in patients with multiple myeloma treated with daratumumab-based therapy
.
Blood
.
2025
;
145
(
25
):
3007
-
3014
.
134.
Casneuf
T
,
Xu
XS
,
Adams
HC
, et al
.
Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma
.
Blood Adv
.
2017
;
1
(
23
):
2105
-
2114
.
135.
Maura
F
,
Boyle
EM
,
Coffey
D
, et al
.
Genomic and immune signatures predict clinical outcome in newly diagnosed multiple myeloma treated with immunotherapy regimens
.
Nat Cancer
.
2023
;
4
(
12
):
1660
-
1674
.
136.
Ziccheddu
B
,
Giannotta
C
,
D'Agostino
M
, et al
.
Genomic and immune determinants of resistance to daratumumab-based therapy in relapsed refractory multiple myeloma
.
Blood Cancer J
.
2024
;
14
(
1
):
117
.
137.
Kim
S
,
Kwak
J-E
,
Koh
J-Y
, et al
.
NKG2D-mediated cytotoxicity of CD4 cytotoxic T cells in multiple myeloma
.
Blood
.
2025
;
146
(
4
):
456
-
470
.
138.
Aleman
A
,
Upadhyaya
B
,
Tuballes
K
, et al
.
Variable cellular responses to SARS-CoV-2 in fully vaccinated patients with multiple myeloma
.
Cancer Cell
.
2021
;
39
(
11
):
1442
-
1444
.
139.
Chari
A
,
Samur
MK
,
Martinez-Lopez
J
, et al
.
Clinical features associated with COVID-19 outcome in multiple myeloma: first results from the International Myeloma Society data set
.
Blood
.
2020
;
136
(
26
):
3033
-
3040
.
140.
Henriquez
S
,
Zerbit
J
,
Bruel
T
, et al
.
Anti-CD38 therapy impairs SARS-CoV-2 vaccine response against alpha and delta variants in patients with multiple myeloma
.
Blood
.
2022
;
139
(
6
):
942
-
946
.
141.
Martín-Sánchez
E
,
Tamariz-Amador
LE
,
Guerrero
C
, et al
.
Immune dysfunction prior to and during vaccination in multiple myeloma: a case study based on COVID-19
.
Blood Cancer J
.
2024
;
14
(
1
):
111
.
142.
Tamariz-Amador
LE
,
Battaglia
AM
,
Maia
C
, et al
.
Immune biomarkers to predict SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies
.
Blood Cancer J
.
2021
;
11
(
12
):
202
.
143.
Martín-Sánchez
E
,
Garcés
JJ
,
Maia
C
, et al
.
Immunological biomarkers of fatal COVID-19: a study of 868 patients
.
Front Immunol
.
2021
;
12
:
659018
.
144.
Dhodapkar
MV
.
Immune-pathogenesis of myeloma
.
Hematol Oncol Clin North Am
.
2024
;
38
(
2
):
281
-
291
.
145.
Paiva
B
,
Cedena
MT
,
Puig
N
, et al
.
Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients
.
Blood
.
2016
;
127
(
25
):
3165
-
3174
.
146.
Ho
CM
,
McCarthy
PL
,
Wallace
PK
, et al
.
Immune signatures associated with improved progression-free and overall survival for myeloma patients treated with AHSCT
.
Blood Adv
.
2017
;
1
(
15
):
1056
-
1066
.
147.
Botta
C
,
Maia
C
,
Garcés
JJ
, et al
.
FlowCT for the analysis of large immunophenotypic data sets and biomarker discovery in cancer immunology
.
Blood Adv
.
2022
;
6
(
2
):
690
-
703
.
You do not currently have access to this content.
Sign in via your Institution