• CD4+ CTLs are significantly increased and clonally expanded in the bone marrow of patients with multiple myeloma.

  • CD4+ CTLs directly kill myeloma cells in an NKG2D-dependent manner, and the abundance of NKG2D+CD4+ CTLs correlates with improved survival.

Abstract

Emerging evidence indicates that CD4+ T cells contribute to antitumor immunity beyond their traditional roles as helpers or regulators. However, the specific subset of CD4+ T cells mediating beneficial outcomes in patients with multiple myeloma remains unclear. Here, we performed single-cell RNA sequencing and T-cell receptor sequencing on CD4+ T cells sorted from the bone marrow of patients across the stages of myeloma progression. We identified several distinct states of CD4+ cytotoxic T lymphocytes (CTLs) that were significantly increased and clonally expanded in patients with myeloma. CD4+ CTLs displayed transcriptional and phenotypic characteristics indicative of cytotoxicity, demonstrating their ability to directly kill myeloma cells. This cytotoxicity, however, was abrogated by NKG2D blockade. Notably, the abundance of NKG2D+CD4+ CTLs correlated with improved survival in patients with myeloma. Our findings suggest that harnessing CD4+ CTLs could lead to novel strategies for enhancing immunotherapy outcomes in multiple myeloma.

1.
van de Donk
NWCJ
,
Pawlyn
C
,
Yong
KL
.
Multiple myeloma
.
Lancet
.
2021
;
397
(
10272
):
410
-
427
.
2.
Malard
F
,
Neri
P
,
Bahlis
NJ
, et al
.
Multiple myeloma
.
Nat Rev Dis Primers
.
2024
;
10
(
1
):
45
.
3.
Cho
H
,
Kim
KH
,
Lee
H
, et al
.
Adaptive natural killer cells facilitate effector functions of daratumumab in multiple myeloma
.
Clin Cancer Res
.
2021
;
27
(
10
):
2947
-
2958
.
4.
Samur
MK
,
Szalat
R
,
Munshi
NC
.
Single-cell profiling in multiple myeloma: insights, problems, and promises
.
Blood
.
2023
;
142
(
4
):
313
-
324
.
5.
Robinson
MH
,
Villa
NY
,
Jaye
DL
, et al
.
Regulation of antigen-specific T cell infiltration and spatial architecture in multiple myeloma and premalignancy
.
J Clin Invest
.
2023
;
133
(
15
):
e167629
.
6.
John
M
,
Helal
M
,
Duell
J
, et al
.
Spatial transcriptomics reveals profound subclonal heterogeneity and T-cell dysfunction in extramedullary myeloma
.
Blood
.
2024
;
144
(
20
):
2121
-
2135
.
7.
Zavidij
O
,
Haradhvala
NJ
,
Mouhieddine
TH
, et al
.
Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma
.
Nat Cancer
.
2020
;
1
(
5
):
493
-
506
.
8.
Alrasheed
N
,
Lee
L
,
Ghorani
E
, et al
.
Marrow-infiltrating regulatory T cells correlate with the presence of dysfunctional CD4+PD-1+ cells and inferior survival in patients with newly diagnosed multiple myeloma
.
Clin Cancer Res
.
2020
;
26
(
13
):
3443
-
3454
.
9.
Botta
C
,
Perez
C
,
Larrayoz
M
, et al
.
Large T cell clones expressing immune checkpoints increase during multiple myeloma evolution and predict treatment resistance
.
Nat Commun
.
2023
;
14
(
1
):
5825
.
10.
Zelle-Rieser
C
,
Thangavadivel
S
,
Biedermann
R
, et al
.
T cells in multiple myeloma display features of exhaustion and senescence at the tumor site
.
J Hematol Oncol
.
2016
;
9
(
1
):
116
.
11.
Cohen
AD
,
Raje
N
,
Fowler
JA
,
Mezzi
K
,
Scott
EC
,
Dhodapkar
MV
.
How to train your T cells: overcoming immune dysfunction in multiple myeloma
.
Clin Cancer Res
.
2020
;
26
(
7
):
1541
-
1554
.
12.
Kwon
M
,
Kim
CG
,
Lee
H
, et al
.
PD-1 blockade reinvigorates bone marrow CD8+ T cells from patients with multiple myeloma in the presence of TGFβ inhibitors
.
Clin Cancer Res
.
2020
;
26
(
7
):
1644
-
1655
.
13.
Shah
UA
,
Mailankody
S
.
Emerging immunotherapies in multiple myeloma
.
BMJ
.
2020
;
370
:
m3176
.
14.
Holstein
SA
,
Grant
SJ
,
Wildes
TM
.
Chimeric antigen receptor T-cell and bispecific antibody therapy in multiple myeloma: moving into the future
.
J Clin Oncol
.
2023
;
41
(
27
):
4416
-
4429
.
15.
Chung
H
,
Cho
H
.
Recent advances in cellular immunotherapy for lymphoid malignancies
.
Blood Res
.
2023
;
58
(
4
):
166
-
172
.
16.
Cappell
KM
,
Kochenderfer
JN
.
Long-term outcomes following CAR T cell therapy: what we know so far
.
Nat Rev Clin Oncol
.
2023
;
20
(
6
):
359
-
371
.
17.
Touzeau
C
,
Krishnan
AY
,
Moreau
P
, et al
.
Efficacy and safety of teclistamab in patients with relapsed/refractory multiple myeloma after BCMA-targeting therapies
.
Blood
.
2024
;
144
(
23
):
2375
-
2388
.
18.
Friedrich
MJ
,
Neri
P
,
Kehl
N
, et al
.
The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients
.
Cancer Cell
.
2023
;
41
(
4
):
711
-
725.e6
.
19.
Lee
H
,
Ahn
S
,
Maity
R
, et al
.
Mechanisms of antigen escape from BCMA- or GPRC5D-targeted immunotherapies in multiple myeloma
.
Nat Med
.
2023
;
29
(
9
):
2295
-
2306
.
20.
Lee
H
,
Neri
P
,
Bahlis
NJ
.
BCMA- or GPRC5D-targeting bispecific antibodies in multiple myeloma: efficacy, safety, and resistance mechanisms
.
Blood
.
2024
;
143
(
13
):
1211
-
1217
.
21.
Oh
DY
,
Fong
L
.
Cytotoxic CD4+ T cells in cancer: expanding the immune effector toolbox
.
Immunity
.
2021
;
54
(
12
):
2701
-
2711
.
22.
Oliveira
G
,
Wu
CJ
.
Dynamics and specificities of T cells in cancer immunotherapy
.
Nat Rev Cancer
.
2023
;
23
(
5
):
295
-
316
.
23.
Speiser
DE
,
Chijioke
O
,
Schaeuble
K
,
Münz
C
.
CD4+ T cells in cancer
.
Nat Cancer
.
2023
;
4
(
3
):
317
-
329
.
24.
Jeong
S
,
Jang
N
,
Kim
M
,
Choi
I
.
CD4+ cytotoxic T cells: an emerging effector arm of anti-tumor immunity
.
BMB Rep
.
2023
;
56
(
2
):
140
-
144
.
25.
Peng
SK
,
Lin
AQ
,
Jiang
AM
, et al
.
CTLs heterogeneity and plasticity: implications for cancer immunotherapy
.
Mol Cancer
.
2024
;
23
(
1
):
58
.
26.
Bogen
B
,
Fauskanger
M
,
Haabeth
OA
,
Tveita
A
.
CD4+ T cells indirectly kill tumor cells via induction of cytotoxic macrophages in mouse models
.
Cancer Immunol Immunother
.
2019
;
68
(
11
):
1865
-
1873
.
27.
Haabeth
OAW
,
Hennig
K
,
Fauskanger
M
,
Løset
,
Bogen
B
,
Tveita
A
.
CD4+ T-cell killing of multiple myeloma cells is mediated by resident bone marrow macrophages
.
Blood Adv
.
2020
;
4
(
12
):
2595
-
2605
.
28.
Künzli
M
,
Masopust
D
.
CD4+ T cell memory
.
Nat Immunol
.
2023
;
24
(
6
):
903
-
914
.
29.
Dosani
T
,
Carlsten
M
,
Maric
I
,
Landgren
O
.
The cellular immune system in myelomagenesis: NK cells and T cells in the development of myeloma [corrected] and their uses in immunotherapies
.
Blood Cancer J
.
2015
;
5
(
4
):
e306
.
30.
Krejcik
J
,
Casneuf
T
,
Nijhof
IS
, et al
.
Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma
.
Blood
.
2016
;
128
(
3
):
384
-
394
.
31.
Feng
XY
,
Zhang
L
,
Acharya
C
, et al
.
Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma
.
Clin Cancer Res
.
2017
;
23
(
15
):
4290
-
4300
.
32.
Dahlhoff
J
,
Manz
H
,
Steinfatt
T
, et al
.
Transient regulatory T-cell targeting triggers immune control of multiple myeloma and prevents disease progression
.
Leukemia
.
2022
;
36
(
3
):
790
-
800
.
33.
Cohen
AD
,
Garfall
AL
,
Stadtmauer
EA
, et al
.
B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma
.
J Clin Invest
.
2019
;
129
(
6
):
2210
-
2221
.
34.
Garfall
AL
,
Dancy
EK
,
Cohen
AD
, et al
.
T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma
.
Blood Adv
.
2019
;
3
(
19
):
2812
-
2815
.
35.
Lin
Y
,
Raje
NS
,
Berdeja
JG
, et al
.
Idecabtagene vicleucel for relapsed and refractory multiple myeloma: post hoc 18-month follow-up of a phase 1 trial
.
Nat Med
.
2023
;
29
(
9
):
2286
-
2294
.
36.
Oetjen
KA
,
Lindblad
KE
,
Goswami
M
, et al
.
Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry
.
Jci Insight
.
2018
;
3
(
23
):
e124928
.
37.
Cheng
Y
,
Sun
FM
,
Alapat
DV
, et al
.
Multi-omics reveal immune microenvironment alterations in multiple myeloma and its precursor stages
.
Blood Cancer J
.
2024
;
14
(
1
):
194
.
38.
Yao
LJ
,
Jayasinghe
RG
,
Lee
BH
, et al
.
Comprehensive characterization of the multiple myeloma immune microenvironment using integrated scRNA-seq, CyTOF, and CITE-seq analysis
.
Cancer Res Commun
.
2022
;
2
(
10
):
1255
-
1265
.
39.
Jung
SH
,
Park
SS
,
Lim
JY
, et al
.
Single-cell analysis of multiple myelomas refines the molecular features of bortezomib treatment responsiveness
.
Exp Mol Med
.
2022
;
54
(
11
):
1967
-
1978
.
40.
Yao
LJ
,
Wang
JT
,
Jayasinghe
RG
, et al
.
Single-cell discovery and multiomic characterization of therapeutic targets in multiple myeloma
.
Cancer Res
.
2023
;
83
(
8
):
1214
-
1233
.
41.
Tickotsky
N
,
Sagiv
T
,
Prilusky
J
,
Shifrut
E
,
Friedman
N
.
McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences
.
Bioinformatics
.
2017
;
33
(
18
):
2924
-
2929
.
42.
Goncharov
M
,
Bagaev
D
,
Shcherbinin
D
, et al
.
VDJdb in the pandemic era: a compendium of T cell receptors specific for SARS-CoV-2
.
Nat Methods
.
2022
;
19
(
9
):
1017
-
1019
.
43.
Novellino
L
,
Castelli
C
,
Parmiani
G
.
A listing of human tumor antigens recognized by T cells: March 2004 update
.
Cancer Immunol Immunother
.
2005
;
54
(
3
):
187
-
207
.
44.
Zhang
Y
,
Chaux
P
,
Stroobant
V
, et al
.
A MAGE-3 peptide presented by HLA-DR1 to CD4+ T cells that were isolated from a melanoma patient vaccinated with a MAGE-3 protein
.
J Immunol
.
2003
;
171
(
1
):
219
-
225
.
45.
Mandic
M
,
Castelli
F
,
Janjic
B
, et al
.
One NY-ESO-1-derived epitope that promiscuously binds to multiple HLA-DR and HLA-DP4 molecules and stimulates autologous CD4+ T cells from patients with NY-ESO-1-expressing melanoma
.
J Immunol
.
2005
;
174
(
3
):
1751
-
1759
.
46.
Chu
YS
,
Dai
EY
,
Li
YT
, et al
.
Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance
.
Nat Med
.
2023
;
29
(
6
):
1550
-
1562
.
47.
Malyshkina
A
,
Brüggemann
A
,
Paschen
A
,
Dittmer
U
.
Cytotoxic CD4+ T cells in chronic viral infections and cancer
.
Front Immunol
.
2023
;
14
:
1271236
.
48.
Cachot
A
,
Bilous
M
,
Liu
YC
, et al
.
Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer
.
Sci Adv
.
2021
;
7
(
9
):
eabe3348
.
49.
Hu
CX
,
Li
TY
,
Xu
YQ
, et al
.
CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data
.
Nucleic Acids Res
.
2023
;
51
(
D1
):
D870
-
D876
.
50.
Oh
DY
,
Kwek
SS
,
Raju
SS
, et al
.
Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer
.
Cell
.
2020
;
181
(
7
):
1612
-
1625.e13
.
51.
Luo
YC
,
Xu
CL
,
Wang
B
, et al
.
Single-cell transcriptomic analysis reveals disparate effector differentiation pathways in human Treg compartment
.
Nat Commun
.
2021
;
12
(
1
):
3913
.
52.
Kim
HJ
,
Barnitz
RA
,
Kreslavsky
T
, et al
.
Stable inhibitory activity of regulatory T cells requires the transcription factor Helios
.
Science
.
2015
;
350
(
6258
):
334
-
339
.
53.
Chapman
NM
,
Boothby
MR
,
Chi
HB
.
Metabolic coordination of T cell quiescence and activation
.
Nat Rev Immunol
.
2020
;
20
(
1
):
55
-
70
.
54.
Liau
ES
,
Jin
SQ
,
Chen
YC
, et al
.
Single-cell transcriptomic analysis reveals diversity within mammalian spinal motor neurons
.
Nat Commun
.
2023
;
14
(
1
):
46
.
55.
Zhang
WT
,
Gu
YX
,
Sun
QL
, et al
.
Ex vivo maintenance of primary human multiple myeloma cells through the optimization of the osteoblastic niche
.
PLoS One
.
2015
;
10
(
5
):
e0125995
.
56.
Tai
YT
,
Teoh
G
,
Shima
Y
, et al
.
Isolation and characterization of human multiple myeloma cell enriched populations
.
J Immunol Methods
.
2000
;
235
(
1-2
):
11
-
19
.
57.
Kim
S
,
Chung
H
,
Kwak
JE
, et al
.
Clearing soluble MIC reverses the impaired function of natural killer cells from patients with multiple myeloma
.
J Immunother Cancer
.
2024
;
12
(
1
):
e007886
.
58.
Romee
R
,
Cooley
S
,
Berrien-Elliott
MM
, et al
.
First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation
.
Blood
.
2018
;
131
(
23
):
2515
-
2527
.
59.
Lee
H
,
Park
SH
,
Shin
EC
.
IL-15 in T-cell responses and immunopathogenesis
.
Immune Netw
.
2024
;
24
(
1
):
e11
.
You do not currently have access to this content.
Sign in via your Institution