Abstract

Phosphoinositide 3-kinase gamma (PI3Kγ), the only class IB PI3 kinase, is a cell-extrinsic immunotherapy target in solid tumors. PI3Kγ inhibition reprograms immunosuppressive myeloid cells to acquire immunostimulatory phenotypes, which promote antitumor cytotoxic T-cell activity. Although PI3Kγ inhibition has no direct effect on solid tumor cells, several new studies have nominated PI3Kγ as a cell-intrinsic target in various leukemias, particularly acute myeloid leukemia. Intrinsic dependency on PI3Kγ is present at baseline in leukemias with specific pathological characteristics, is inducible by extrinsic inflammation in others, and may also be acquired with resistance to certain therapies. The discovery of leukemia PI3Kγ dependency has generated enthusiasm for immediate clinical trial evaluation of inhibitor monotherapy and combinations. Parallel laboratory evaluation is needed to develop an improved understanding of leukemia disease features associated with clinical inhibitor sensitivity that might suggest biomarker-directed patient enrichment strategies. In this review, we discuss recent progress credentialing PI3Kγ as a bona fide target in leukemia. We also highlight open questions, including a need to understand the mechanism of acquired resistance to PI3Kγ inhibition, how to optimally prioritize combination therapies to enhance PI3Kγ inhibitor utility, and how cell-extrinsic effects of PI3Kγ inhibition in the leukemia microenvironment might also contribute to clinical activity.

1.
Bilanges
B
,
Posor
Y
,
Vanhaesebroeck
B
.
PI3K isoforms in cell signalling and vesicle trafficking
.
Nat Rev Mol Cell Biol
.
2019
;
20
(
9
):
515
-
534
.
2.
Jean
S
,
Kiger
AA
.
Classes of phosphoinositide 3-kinases at a glance
.
J Cell Sci
.
2014
;
127
(
Pt 5
):
923
-
928
.
3.
Stephens
L
,
Smrcka
A
,
Cooke
FT
,
Jackson
TR
,
Sternweis
PC
,
Hawkins
PT
.
A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits
.
Cell
.
1994
;
77
(
1
):
83
-
93
.
4.
Krugmann
S
,
Hawkins
PT
,
Pryer
N
,
Braselmann
S
.
Characterizing the interactions between the two subunits of the p101/p110gamma phosphoinositide 3-kinase and their role in the activation of this enzyme by G beta gamma subunits
.
J Biol Chem
.
1999
;
274
(
24
):
17152
-
17158
.
5.
Thorpe
LM
,
Yuzugullu
H
,
Zhao
JJ
.
PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting
.
Nat Rev Cancer
.
2015
;
15
(
1
):
7
-
24
.
6.
Janku
F
,
Yap
TA
,
Meric-Bernstam
F
.
Targeting the PI3K pathway in cancer: are we making headway?
.
Nat Rev Clin Oncol
.
2018
;
15
(
5
):
273
-
291
.
7.
Okkenhaug
K
,
Graupera
M
,
Vanhaesebroeck
B
.
Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy
.
Cancer Discov
.
2016
;
6
(
10
):
1090
-
1105
.
8.
Hawkins
PT
,
Stephens
LR
.
PI3Kgamma is a key regulator of inflammatory responses and cardiovascular homeostasis
.
Science
.
2007
;
318
(
5847
):
64
-
66
.
9.
Barbi
J
,
Cummings
HE
,
Lu
B
, et al
.
PI3Kgamma (PI3Kgamma) is essential for efficient induction of CXCR3 on activated T cells
.
Blood
.
2008
;
112
(
8
):
3048
-
3051
.
10.
Sirico
M
,
D'Angelo
A
,
Gianni
C
,
Casadei
C
,
Merloni
F
,
De Giorgi
U
.
Current state and future challenges for PI3K inhibitors in cancer therapy
.
Cancers (Basel)
.
2023
;
15
(
3
):
703
.
11.
Yu
M
,
Chen
J
,
Xu
Z
, et al
.
Development and safety of PI3K inhibitors in cancer
.
Arch Toxicol
.
2023
;
97
(
3
):
635
-
650
.
12.
Thibault
B
,
Ramos-Delgado
F
,
Guillermet-Guibert
J
.
Targeting class I-II-III PI3Ks in cancer therapy: recent advances in tumor biology and preclinical research
.
Cancers (Basel)
.
2023
;
15
(
3
):
784
.
13.
Browne
IM
,
André
F
,
Chandarlapaty
S
,
Carey
LA
,
Turner
NC
.
Optimal targeting of PI3K-AKT and mTOR in advanced oestrogen receptor-positive breast cancer
.
Lancet Oncol
.
2024
;
25
(
4
):
e139
-
e151
.
14.
Belli
C
,
Repetto
M
,
Anand
S
,
Porta
C
,
Subbiah
V
,
Curigliano
G
.
The emerging role of PI3K inhibitors for solid tumour treatment and beyond
.
Br J Cancer
.
2023
;
128
(
12
):
2150
-
2162
.
15.
André
F
,
Ciruelos
E
,
Rubovszky
G
, et al
.
Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer
.
N Engl J Med
.
2019
;
380
(
20
):
1929
-
1940
.
16.
Singh
S
,
Bradford
D
,
Li
X
, et al
.
FDA approval summary: alpelisib for PIK3CA-related overgrowth spectrum
.
Clin Cancer Res
.
2024
;
30
(
1
):
23
-
28
.
17.
Bergholz
JS
,
Wang
Q
,
Wang
Q
, et al
.
PI3Kbeta controls immune evasion in PTEN-deficient breast tumours
.
Nature
.
2023
;
617
(
7959
):
139
-
146
.
18.
Peng
W
,
Chen
JQ
,
Liu
C
, et al
.
Loss of PTEN promotes resistance to T cell-mediated immunotherapy
.
Cancer Discov
.
2016
;
6
(
2
):
202
-
216
.
19.
Choudhury
AD
,
Higano
CS
,
de Bono
JS
, et al
.
A phase I study investigating AZD8186, a potent and selective inhibitor of PI3Kbeta/delta, in patients with advanced solid tumors
.
Clin Cancer Res
.
2022
;
28
(
11
):
2257
-
2269
.
20.
Kater
AP
,
Tonino
SH
,
Spiering
M
, et al
.
Final results of a phase 1b study of the safety and efficacy of the PI3Kdelta inhibitor acalisib (GS-9820) in relapsed/refractory lymphoid malignancies
.
Blood Cancer J
.
2018
;
8
(
2
):
16
.
21.
Sanford
DS
,
Wierda
WG
,
Burger
JA
,
Keating
MJ
,
O'Brien
SM
.
Three newly approved drugs for chronic lymphocytic leukemia: incorporating ibrutinib, idelalisib, and obinutuzumab into clinical practice
.
Clin Lymphoma Myeloma Leuk
.
2015
;
15
(
7
):
385
-
391
.
22.
Dong
S
,
Harrington
BK
,
Hu
EY
, et al
.
PI3K p110delta inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression
.
J Clin Invest
.
2019
;
129
(
1
):
122
-
136
.
23.
Kaneda
MM
,
Cappello
P
,
Nguyen
AV
, et al
.
Macrophage PI3Kgamma drives pancreatic ductal adenocarcinoma progression
.
Cancer Discov
.
2016
;
6
(
8
):
870
-
885
.
24.
Kaneda
MM
,
Messer
KS
,
Ralainirina
N
, et al
.
PI3Kgamma is a molecular switch that controls immune suppression
.
Nature
.
2016
;
539
(
7629
):
437
-
442
.
25.
Zheng
W
,
Pollard
JW
.
Inhibiting macrophage PI3Kgamma to enhance immunotherapy
.
Cell Res
.
2016
;
26
(
12
):
1267
-
1268
.
26.
Hong
DS
,
Postow
M
,
Chmielowski
B
, et al
.
Eganelisib, a first-in-class PI3Kgamma inhibitor, in patients with advanced solid tumors: results of the phase 1/1b MARIO-1 trial
.
Clin Cancer Res
.
2023
;
29
(
12
):
2210
-
2219
.
27.
De Henau
O
,
Rausch
M
,
Winkler
D
, et al
.
Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells
.
Nature
.
2016
;
539
(
7629
):
443
-
447
.
28.
Lin
KH
,
Rutter
JC
,
Xie
A
, et al
.
P2RY2-AKT activation is a therapeutically actionable consequence of XPO1 inhibition in acute myeloid leukemia
.
Nat Cancer
.
2022
;
3
(
7
):
837
-
851
.
29.
Gu
H
,
Chen
C
,
Hou
ZS
, et al
.
PI3Kgamma maintains the self-renewal of acute myeloid leukemia stem cells by regulating the pentose phosphate pathway
.
Blood
.
2024
;
143
(
19
):
1965
-
1979
.
30.
Sung
PJ
.
PIKing the right target in AML
.
Blood
.
2024
;
143
(
19
):
1884
-
1885
.
31.
Luo
Q
,
Raulston
EG
,
Prado
MA
, et al
.
Targetable leukaemia dependency on noncanonical PI3Kgamma signalling
.
Nature
.
2024
;
630
(
8015
):
198
-
205
.
32.
Kelly
LM
,
Rutter
JC
,
Lin
KH
, et al
.
Targeting a lineage-specific PI3Kɣ-Akt signaling module in acute myeloid leukemia using a heterobifunctional degrader molecule
.
Nat Cancer
.
2024
;
5
(
7
):
1082
-
1101
.
33.
Karvonen
H
,
Vasan
N
.
Therapeutic potential of inhibiting the PI3Kgamma complex for leukemia
.
Cell Chem Biol
.
2024
;
31
(
7
):
1244
-
1246
.
34.
Stonestrom
AJ
,
Levine
RL
.
Inhibiting PI3Kgamma in acute myeloid leukemia
.
Nat Cancer
.
2024
;
5
(
7
):
958
-
959
.
35.
Zhang
Y
,
Kong
Q
,
Zhang
Y
.
Noncanonical PI3Kgamma signaling addiction is a therapeutic target in a subset of leukemias
.
Innovation (Camb)
.
2024
;
5
(
6
):
100706
.
36.
Davis
RJ
,
Moore
EC
,
Clavijo
PE
, et al
.
Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid-derived suppressor cells with a selective inhibitor of PI3Kdelta/gamma
.
Cancer Res
.
2017
;
77
(
10
):
2607
-
2619
.
37.
Sai
J
,
Owens
P
,
Novitskiy
SV
, et al
.
PI3K inhibition reduces mammary tumor growth and facilitates antitumor immunity and anti-PD1 responses [published correction appears in Clin Cancer Res. 2018 Aug 1;24(15):3782]
.
Clin Cancer Res
.
2017
;
23
(
13
):
3371
-
3384
.
38.
Carnevalli
LS
,
Taylor
MA
,
King
M
, et al
.
Macrophage activation status rather than repolarization is associated with enhanced checkpoint activity in combination with PI3Kgamma inhibition
.
Mol Cancer Ther
.
2021
;
20
(
6
):
1080
-
1091
.
39.
Fruman
DA
.
Targeting PI3K-gamma in non-Hodgkin lymphoma
.
J Clin Oncol
.
2019
;
37
(
11
):
932
-
934
.
40.
Maffei
R
,
Benatti
S
,
Atene
CG
, et al
.
Selective inhibition of PI3Kgamma affects survival and proliferation of chronic lymphocytic leukemia B cells
.
Leuk Lymphoma
.
2020
;
61
(
2
):
455
-
459
.
41.
Ali
AY
,
Wu
X
,
Eissa
N
, et al
.
Distinct roles for phosphoinositide 3-kinases gamma and delta in malignant B cell migration
.
Leukemia
.
2018
;
32
(
9
):
1958
-
1969
.
42.
Johnson
C
,
Marriott
SJ
,
Levy
LS
.
Overexpression of p101 activates PI3Kgamma signaling in T cells and contributes to cell survival
.
Oncogene
.
2007
;
26
(
49
):
7049
-
7057
.
43.
Pillinger
G
,
Loughran
NV
,
Piddock
RE
, et al
.
Targeting PI3Kdelta and PI3Kgamma signalling disrupts human AML survival and bone marrow stromal cell mediated protection
.
Oncotarget
.
2016
;
7
(
26
):
39784
-
39795
.
44.
Mastini
C
,
Campisi
M
,
Patrucco
E
, et al
.
Targeting CCR7-PI3Kgamma overcomes resistance to tyrosine kinase inhibitors in ALK-rearranged lymphoma
.
Sci Transl Med
.
2023
;
15
(
702
):
eabo3826
.
45.
Till
KJ
,
Abdullah
M
,
Alnassfan
T
, et al
.
Roles of PI3Kgamma and PI3Kdelta in mantle cell lymphoma proliferation and migration contributing to efficacy of the PI3Kgamma/delta inhibitor duvelisib
.
Sci Rep
.
2023
;
13
(
1
):
3793
.
46.
Rückle
T
,
Schwarz
MK
,
Rommel
C
.
PI3Kgamma inhibition: towards an 'aspirin of the 21st century'?
.
Nat Rev Drug Discov
.
2006
;
5
(
11
):
903
-
918
.
47.
Zhu
J
,
Li
K
,
Yu
L
, et al
.
Targeting phosphatidylinositol 3-kinase gamma (PI3Kgamma): discovery and development of its selective inhibitors
.
Med Res Rev
.
2021
;
41
(
3
):
1599
-
1621
.
48.
Evans
CA
,
Liu
T
,
Lescarbeau
A
, et al
.
Discovery of a selective phosphoinositide-3-kinase (PI3K)-gamma inhibitor (IPI-549) as an immuno-oncology clinical candidate
.
ACS Med Chem Lett
.
2016
;
7
(
9
):
862
-
867
.
49.
Qiu
X
,
Tian
Y
,
Liang
Z
,
Sun
Y
,
Li
Z
,
Bian
J
.
Recent discovery of phosphoinositide 3-kinase gamma inhibitors for the treatment of immune diseases and cancers
.
Future Med Chem
.
2019
;
11
(
16
):
2151
-
2169
.
50.
Mishra
R
,
Patel
H
,
Alanazi
S
,
Kilroy
MK
,
Garrett
JT
.
PI3K inhibitors in cancer: clinical implications and adverse effects
.
Int J Mol Sci
.
2021
;
22
(
7
):
3464
.
51.
Cornelissen
R
,
Lievense
LA
,
Maat
AP
, et al
.
Ratio of intratumoral macrophage phenotypes is a prognostic factor in epithelioid malignant pleural mesothelioma
.
PLoS One
.
2014
;
9
(
9
):
e106742
.
52.
Pemberton
N
,
Mogemark
M
,
Arlbrandt
S
, et al
.
Discovery of highly isoform selective orally bioavailable phosphoinositide 3-kinase (PI3K)-gamma inhibitors
.
J Med Chem
.
2018
;
61
(
12
):
5435
-
5441
.
53.
Gangadhara
G
,
Dahl
G
,
Bohnacker
T
, et al
.
A class of highly selective inhibitors bind to an active state of PI3Kgamma
.
Nat Chem Biol
.
2019
;
15
(
4
):
348
-
357
.
54.
O'Connell
BC
,
Hubbard
C
,
Zizlsperger
N
, et al
.
Eganelisib combined with immune checkpoint inhibitor therapy and chemotherapy in frontline metastatic triple-negative breast cancer triggers macrophage reprogramming, immune activation and extracellular matrix reorganization in the tumor microenvironment
.
J Immunother Cancer
.
2024
;
12
(
8
):
e009160
.
55.
Mohan
ML
,
Jha
BK
,
Gupta
MK
, et al
.
Phosphoinositide 3-kinase gamma inhibits cardiac GSK-3 independently of Akt
.
Sci Signal
.
2013
;
6
(
259
):
ra4
.
56.
Perino
A
,
Ghigo
A
,
Ferrero
E
, et al
.
Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110gamma
.
Mol Cell
.
2011
;
42
(
1
):
84
-
95
.
57.
Becattini
B
,
Marone
R
,
Zani
F
, et al
.
PI3Kgamma within a nonhematopoietic cell type negatively regulates diet-induced thermogenesis and promotes obesity and insulin resistance
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
42
):
E854
-
E863
.
58.
Patrucco
E
,
Notte
A
,
Barberis
L
, et al
.
PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects
.
Cell
.
2004
;
118
(
3
):
375
-
387
.
59.
Lovly
CM
,
Shaw
AT
.
Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies
.
Clin Cancer Res
.
2014
;
20
(
9
):
2249
-
2256
.
60.
Cooper
AJ
,
Sequist
LV
,
Lin
JJ
.
Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management
.
Nat Rev Clin Oncol
.
2022
;
19
(
8
):
499
-
514
.
61.
Wang
E
,
Mi
X
,
Thompson
MC
, et al
.
Mechanisms of resistance to noncovalent Bruton's tyrosine kinase inhibitors
.
N Engl J Med
.
2022
;
386
(
8
):
735
-
743
.
62.
Faubert
B
,
Solmonson
A
,
DeBerardinis
RJ
.
Metabolic reprogramming and cancer progression
.
Science
.
2020
;
368
(
6487
):
eaaw5473
.
63.
Pei
S
,
Pollyea
DA
,
Gustafson
A
, et al
.
Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia
.
Cancer Discov
.
2020
;
10
(
4
):
536
-
551
.
64.
Zhang
H
,
Nakauchi
Y
,
Köhnke
T
, et al
.
Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia
.
Nat Cancer
.
2020
;
1
(
8
):
826
-
839
.
65.
Saluja
S
,
Bansal
I
,
Bhardwaj
R
,
Beg
MS
,
Palanichamy
JK
.
Inflammation as a driver of hematological malignancies
.
Front Oncol
.
2024
;
14
:
1347402
.
66.
Caiado
F
,
Manz
MG
.
IL-1 in aging and pathologies of hematopoietic stem cells
.
Blood
.
2024
;
144
(
4
):
368
-
377
.
67.
Colom Díaz
PA
,
Mistry
JJ
,
Trowbridge
JJ
.
Hematopoietic stem cell aging and leukemia transformation
.
Blood
.
2023
;
142
(
6
):
533
-
542
.
68.
Salik
B
,
Smyth
MJ
,
Nakamura
K
.
Targeting immune checkpoints in hematological malignancies
.
J Hematol Oncol
.
2020
;
13
(
1
):
111
.
69.
Bewersdorf
JP
,
Stahl
M
,
Zeidan
AM
.
Immune checkpoint-based therapy in myeloid malignancies: a promise yet to be fulfilled
.
Expert Rev Anticancer Ther
.
2019
;
19
(
5
):
393
-
404
.
70.
Liu
Y
,
Bewersdorf
JP
,
Stahl
M
,
Zeidan
AM
.
Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: the dawn of a new era?
.
Blood Rev
.
2019
;
34
:
67
-
83
.
You do not currently have access to this content.
Sign in via your Institution