• Matched allogeneic donor CD19 CAR-T therapy (CAR-DLI) is safe and effective for relapsed adult B-ALL but only after lymphodepletion.

  • Repeat CAR-DLI dosing on an escalating schedule for relapse was not found to be effective in this analysis.

Abstract

We developed an allogeneic matched donor CD19 chimeric antigen receptor (CAR) product (CAR–donor lymphocyte infusion [DLI]) for adult patients with B-cell acute lymphoblastic leukemia (B-ALL) after failure of allogeneic stem-cell transplantation (allo-SCT). We evaluate the risks and benefits of pre–CAR-DLI lymphodepleting chemotherapy (LD) and the efficacy of repeat CAR-DLI dosing per conventional DLI protocols. Primary outcomes were toxicity and feasibility of CAR-DLI manufacture; secondary outcomes included CAR-DLI engraftment, expansion, and persistence. A total of 17 allo-SCT donors received leukapheresis and 14 patients with B-ALL (median age, 43 years) received infusion. Median disease burden at registration was 50.5% bone marrow blasts (range, measurable residual disease [MRD] to 100%). Patients 1 to 7 received CAR-DLI alone (CAR-DLI-alone); patients 8 through 14 received CAR-DLI and LD with fludarabine/cyclophosphamide (CAR-DLI+LD). CAR-DLI+LD vs CAR-DLI-alone was associated with superior peak CAR-DLI engraftment (93 134 vs 8010 copies per μg genomic DNA [gDNA]), expansion (858 101 vs 39 038 copies per μg gDNA per 28 days) and persistence (median, 197 vs 32 days). CAR-DLI+LD was not associated with more immunotoxicity than CAR-DLI-alone, and graft-versus-host disease (GVHD; grade 1, skin) affected only 2 of 14 patients (14%). CAR-DLI+LD vs CAR-DLI-alone conferred superior event-free-survival and overall survival at 12 months (57% vs 29%; 83% vs 29%). Repeat CAR-DLI dosing was administered to 8 of 14 (57%) patients with morphological/MRD+ relapse, but with minimal engraftment/expansion or toxicity/efficacy. CAR-DLI+LD has a tolerable safety profile without significant GVHD and is associated with significantly better outcomes than CAR-DLI-alone. Repeat CAR-DLI dosing beyond dose 1 was not found to be effective in this analysis. This trial was registered at www.clinicaltrials.gov as #NCT02893189.

1.
Roddie
C
,
Dias
J
,
O'Reilly
MA
, et al
.
Durable responses and low toxicity after fast off-rate CD19 chimeric antigen receptor-T therapy in adults with relapsed or refractory B-cell acute lymphoblastic leukemia
.
J Clin Oncol
.
2021
;
39
(
30
):
3352
-
3363
.
2.
Shah
BD
,
Ghobadi
A
,
Oluwole
OO
, et al
.
KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study
.
Lancet
.
2021
;
398
(
10299
):
491
-
502
.
3.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
4.
Roddie
C
,
Sandhu
KS
,
Tholouli
E
, et al
.
Obecabtagene autoleucel in adults with B-cell acute lymphoblastic leukemia
.
N Engl J Med
.
2024
;
391
(
23
):
2219
-
2230
.
5.
Kasakovski
D
,
Xu
L
,
Li
Y
.
T cell senescence and CAR-T cell exhaustion in hematological malignancies
.
J Hematol Oncol
.
2018
;
11
(
1
):
91
.
6.
Ayala Ceja
M
,
Khericha
M
,
Harris
C M
,
Puig-Saus
C
,
Chen
YY
.
CAR-T cell manufacturing: major process parameters and next-generation strategies
.
J Exp Med
.
2024
;
221
(
2
):
e20230903
.
7.
Ruella
M
,
Xu
J
,
Barrett
DM
, et al
.
Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell
.
Nat Med
.
2018
;
24
(
10
):
1499
-
1503
.
8.
Del Bufalo
F
,
Becilli
M
,
Rosignoli
C
, et al
.
Allogeneic, donor-derived, second-generation, CD19-directed CAR-T cells for the treatment of pediatric relapsed/refractory BCP-ALL
.
Blood
.
2023
;
142
(
2
):
146
-
157
.
9.
Roddie
C
,
Peggs
KS
.
Donor lymphocyte infusion following allogeneic hematopoietic stem cell transplantation
.
Expert Opin Biol Ther
.
2011
;
11
(
4
):
473
-
487
.
10.
Turtle
CJ
,
Hanafi
LA
,
Berger
C
, et al
.
CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients
.
J Clin Invest
.
2016
;
126
(
6
):
2123
-
2138
.
11.
Baron
F
,
Sandmaier
BM
.
Chimerism and outcomes after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning
.
Leukemia
.
2006
;
20
(
10
):
1690
-
1700
.
12.
Meeker
TC
,
Miller
RA
,
Link
MP
,
Bindl
J
,
Warnke
R
,
Levy
R
.
A unique human B lymphocyte antigen defined by a monoclonal antibody
.
Hybridoma
.
1984
;
3
(
4
):
305
-
320
.
13.
Poirot
L
,
Philip
B
,
Schiffer-Mannioui
C
, et al
.
Multiplex genome-edited T-cell manufacturing platform for ‘Off-the-Shelf’ adoptive T-cell immunotherapies
.
Cancer Res
.
2015
;
75
(
18
):
3853
-
3864
.
14.
Qasim
W
,
Zhan
H
,
Samarasinghe
S
, et al
.
Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells
.
Sci Transl Med
.
2017
;
9
(
374
):
eaaj2013
.
15.
Porter
D
,
Frey
N
,
Wood
PA
,
Weng
Y
,
Grupp
SA
.
Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel
.
J Hematol Oncol
.
2018
;
11
(
1
):
35
.
16.
Roddie
C
,
O’Reilly
M
,
Dias Alves Pinto
J
,
Vispute
K
,
Lowdell
M
.
Manufacturing chimeric antigen receptor T cells: issues and challenges
.
Cytotherapy
.
2019
;
21
(
3
):
327
-
340
.
17.
Hay
KA
,
Gauthier
J
,
Hirayama
AV
, et al
.
Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy
.
Blood
.
2019
;
133
(
15
):
1652
-
1663
.
18.
Heczey
A
,
Louis
CU
,
Savoldo
B
, et al
.
CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma
.
Mol Ther
.
2017
;
25
(
9
):
2214
-
2224
.
19.
Marzolini
MAV
,
Jaunmuktane
Z
,
Roddie
C
,
O'Reilly
M
,
Chiodini
P
,
Peggs
KS
.
Toxoplasmosis initially presenting as neurological sequelae of chimeric antigen receptor T-cell therapy
.
Lancet Infect Dis
.
2019
;
19
(
7
):
788
.
20.
O’Reilly
M
,
Roddie
C
,
Marzolini
MAV
, et al
.
Trafficking of CAR T cells to sites of subclinical leukaemia cutis
.
Lancet Oncol
.
2020
;
21
(
3
):
e179
.
21.
Myers
RM
,
Taraseviciute
A
,
Steinberg
SM
, et al
.
Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL
.
J Clin Oncol
.
2022
;
40
(
9
):
932
-
944
.
22.
Martínez-Romera
I
,
Galán-Gómez
V
,
González-Martínez
B
, et al
.
CD19+ lineage chimerism, an early biomarker after anti-CD19 CAR-T cell therapy in patients previously receiving a hematopoietic stem cell transplantation
.
Front Immunol
.
2022
;
13
:
960412
.
23.
Baguet
C
,
Larghero
J
,
Mebarki
M
.
Early predictive factors of failure in autologous CAR T-cell manufacturing and/or efficacy in hematologic malignancies
.
Blood Adv
.
2024
;
8
(
2
):
337
-
342
.
24.
Kochenderfer
JN
,
Dudley
ME
,
Carpenter
RO
, et al
.
Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation
.
Blood
.
2013
;
122
(
25
):
4129
-
4139
.
25.
Brudno
JN
,
Somerville
RPT
,
Shi
V
, et al
.
Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing Graft-versus-host Disease
.
J Clin Oncol
.
2016
;
34
(
10
):
1112
-
1121
.
26.
Luo
Y
,
Gao
L
,
Liu
J
, et al
.
Donor-derived anti-CD19 CAR T cells GC007g for relapsed or refractory B-cell acute lymphoblastic leukemia after allogeneic HSCT: a phase 1 trial
.
EClinicalMedicine
.
2024
;
67
:
102377
.
27.
Agliardi
G
,
Dias
J
,
Rampotas
A
,
Garcia
J
,
Roddie
C
.
Accelerating and optimising CAR T-cell manufacture to deliver better patient products
.
Lancet Haematol
.
2025
;
12
(
1
):
e57
-
e67
.
28.
Rejeski
K
,
Perez
A
,
Iacoboni
G
, et al
.
The CAR-HEMATOTOX risk-stratifies patients for severe infections and disease progression after CD19 CAR-T in R/R LBCL
.
J Immunother Cancer
.
2022
;
10
(
5
):
e004475
.
29.
Gattinoni
L
,
Finkelstein
SE
,
Klebanoff
CA
, et al
.
Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells
.
J Exp Med
.
2005
;
202
(
7
):
907
-
912
.
30.
Goff
S L
,
Dudley
ME
,
Citrin
DE
, et al
.
Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma
.
J Clin Oncol
.
2016
;
34
(
20
):
2389
-
2397
.
31.
de Oliveira Canedo
G
,
Roddie
C
,
Amrolia
P J
.
Dual targeting CAR-T cells for B-cell acute lymphoblastic leukaemia and B-cell non-Hodgkin lymphoma
.
Blood Adv
.
2025
;
9
(
4
):
704
-
721
.
32.
Myers
R M
,
Li
Y
,
Barz Leahy
A
, et al
.
Humanized CD19-targeted chimeric antigen receptor (CAR) T cells in CAR-naïve and CAR-exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia
.
J Clin Oncol
.
2021
;
39
(
27
):
3044
-
3055
.
33.
Fraietta
JA
,
Beckwith
KA
,
Patel
PR
, et al
.
Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia
.
Blood
.
2016
;
127
(
9
):
1117
-
1127
.
34.
Weber
EW
,
Lynn
RC
,
Parker
KR
, et al
.
Transient “rest” induces functional reinvigoration and epigenetic remodeling in exhausted CAR-T cells
.
bioRxiv
.
Preprint posted online 27 January 2020
.
35.
Lynn
R C
,
Weber
EW
,
Sotillo
E
, et al
.
c-Jun overexpression in CAR T cells induces exhaustion resistance
.
Nature
.
2019
;
576
(
7786
):
293
-
300
.
36.
Doan
A E
,
Mueller
KP
,
Chen
AY
, et al
.
FOXO1 is a master regulator of memory programming in CAR T cells
.
Nature
.
2024
;
629
(
8010
):
211
-
218
.
37.
Gauthier
J
,
Bezerra
ED
,
Hirayama
AV
, et al
.
Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies
.
Blood
.
2021
;
137
(
3
):
323
-
335
.
38.
Holland
EM
,
Molina
JC
,
Dede
K
, et al
.
Efficacy of second CAR-T (CART2) infusion limited by poor CART expansion and antigen modulation
.
J Immunother Cancer
.
2022
;
10
(
5
):
e004483
.
You do not currently have access to this content.
Sign in via your Institution