• NLRP6 deletion enhances platelet NF-κB signaling and granule secretion, promotes microthrombosis, and shortens survival in sepsis.

  • NLRP6 promotes K48-linked TAB1 polyubiquitination and subsequent degradation via TRIM21.

Abstract

Sepsis is characterized by a systemic inflammation and microvascular thrombosis induced by infection. The nucleotide-oligomerization domain–like receptor family pyrin domain containing 6 protein (NLRP6) possesses both proinflammatory and anti-inflammatory abilities with cell type–specific or tissue-specific functions. However, the role of cell type–specific NLRP6 in sepsis remains poorly understood. In this study, we detected NLRP6 expression in platelets. By using platelet-specific NLRP6 knockout mice and the cecal ligation and puncture model of sepsis, we demonstrated that deletion of platelet NLRP6 increased the mortality; enhanced microvascular thrombosis in the lung and liver; and promoted platelet activation, platelet-neutrophil interactions, as well as the neutrophil extracellular trap (NET) formation after sepsis. Platelet function analysis in vitro showed that deletion of NLRP6 enhanced platelet aggregation, activation, and granules release. In addition, NLRP6 deletion promoted platelet NF-κB signaling via sustaining transforming growth factor-β activated kinase 1–binding protein 1 (TAB1) expression independent of the inflammasome. Moreover, inhibition of NF-κB signaling abolished the aggravated effects of the absence of platelet NLRP6 on the intravascular microthrombosis and NET formation in sepsis and increased the overall survival. Mechanistically, NLRP6 facilitated the interaction between tripartite motif–containing protein 21 (TRIM21) and TAB1 in activated platelets, resulting in K48-linked polyubiquitination of TAB1 and subsequent degradation. Finally, sepsis plasma triggered TAB1 degradation mediated by NLRP6/TRIM21 in normal healthy platelets through toll-like receptor 4/myeloid differentiation primary response 88. Our study identifies a novel protective role of platelet NLRP6 in microvascular thrombosis during sepsis, implying it as a novel target for the treatment of sepsis.

1.
Cao
M
,
Wang
G
,
Xie
J
.
Immune dysregulation in sepsis: experiences, lessons and perspectives
.
Cell Death Discov
.
2023
;
9
(
1
):
465
.
2.
Stark
K
,
Massberg
S
.
Interplay between inflammation and thrombosis in cardiovascular pathology
.
Nat Rev Cardiol
.
2021
;
18
(
9
):
666
-
682
.
3.
Žigon
P
,
Shao
BJ
.
Editorial: Inflammation, the link between venous and arterial thrombosis
.
Front Cardiovasc Med
.
2024
;
11
:
1433858
.
4.
Winer
LK
,
Salyer
C
,
Beckmann
N
,
Caldwell
CC
,
Nomellini
V
.
Enigmatic role of coagulopathy among sepsis survivors: a review of coagulation abnormalities and their possible link to chronic critical illness
.
Trauma Surg Acute Care Open
.
2020
;
5
(
1
):
e000462
.
5.
Assinger
A
,
Schrottmaier
WC
,
Salzmann
M
,
Rayes
J
.
Platelets in sepsis: an update on experimental models and clinical data
.
Front Immunol
.
2019
;
10
:
1687
.
6.
Hua
Y
,
Wang
R
,
Yang
J
,
Ou
X
.
Platelet count predicts mortality in patients with sepsis: a retrospective observational study
.
Medicine (Baltimore)
.
2023
;
102
(
38
):
e35335
.
7.
Schupp
T
,
Weidner
K
,
Rusnak
J
, et al
.
Diagnostic and prognostic role of platelets in patients with sepsis and septic shock
.
Platelets
.
2023
;
34
(
1
):
2131753
.
8.
Morrell
CN
,
Aggrey
AA
,
Chapman
LM
,
Modjeski
KL
.
Emerging roles for platelets as immune and inflammatory cells
.
Blood
.
2014
;
123
(
18
):
2759
-
2767
.
9.
Khan
HA
,
Prasad
NR
,
Alrokayan
SH
,
Alghamdi
AA
.
Antiproliferative effect of Solanum nigrum L. water extract on breast cancer cells: potential roles of apoptosis and oxidative stress
.
Cell Mol Biol (Noisy-le-grand)
.
2023
;
69
(
10
):
136
-
142
.
10.
Kim
YK
,
Shin
JS
,
Nahm
MH
.
NOD-like receptors in infection, immunity, and diseases
.
Yonsei Med J
.
2016
;
57
(
1
):
5
-
14
.
11.
Broz
P
,
Dixit
VM
.
Inflammasomes: mechanism of assembly, regulation and signalling
.
Nat Rev Immunol
.
2016
;
16
(
7
):
407
-
420
.
12.
Elinav
E
,
Strowig
T
,
Kau
AL
, et al
.
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
.
Cell
.
2011
;
145
(
5
):
745
-
757
.
13.
Wlodarska
M
,
Thaiss
CA
,
Nowarski
R
, et al
.
NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion
.
Cell
.
2014
;
156
(
5
):
1045
-
1059
.
14.
Potruch
A
,
Schwartz
A
,
Ilan
Y
.
The role of bacterial translocation in sepsis: a new target for therapy
.
Therap Adv Gastroenterol
.
2022
;
15
:
17562848221094214
.
15.
Angosto-Bazarra
D
,
Molina-López
C
,
Pelegrín
P
.
Physiological and pathophysiological functions of NLRP6: pro- and anti-inflammatory roles
.
Commun Biol
.
2022
;
5
(
1
):
524
.
16.
Venuprasad
K
,
Theiss
AL
.
NLRP6 in host defense and intestinal inflammation
.
Cell Rep
.
2021
;
35
(
4
):
109043
.
17.
Cox
D
.
Sepsis - it is all about the platelets
.
Front Immunol
.
2023
;
14
:
1210219
.
18.
Li
Y
,
Jiang
H
,
Li
X
, et al
.
Platelet-specific deletion of TGF-beta1 impairs septic thrombosis in mice-brief report
.
Arterioscler Thromb Vasc Biol
.
2025
;
45
(
1
):
136
-
143
.
19.
Park
I
,
Kim
M
,
Choe
K
, et al
.
Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury
.
Eur Respir J
.
2019
;
53
(
3
):
1800786
.
20.
Sadowitz
B
,
Roy
S
,
Gatto
LA
,
Habashi
N
,
Nieman
G
.
Lung injury induced by sepsis: lessons learned from large animal models and future directions for treatment
.
Expert Rev Anti Infect Ther
.
2011
;
9
(
12
):
1169
-
1178
.
21.
Yan
J
,
Li
S
,
Li
S
.
The role of the liver in sepsis
.
Int Rev Immunol
.
2014
;
33
(
6
):
498
-
510
.
22.
Rossaint
J
,
Zarbock
A
.
Platelets in leucocyte recruitment and function
.
Cardiovasc Res
.
2015
;
107
(
3
):
386
-
395
.
23.
Chen
Z
,
Zhang
H
,
Qu
M
, et al
.
Review: the emerging role of neutrophil extracellular traps in sepsis and sepsis-associated thrombosis
.
Front Cell Infect Microbiol
.
2021
;
11
:
653228
.
24.
Grenier
JM
,
Wang
L
,
Manji
GA
, et al
.
Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1
.
FEBS Lett
.
2002
;
530
(
1-3
):
73
-
78
.
25.
Sakurai
H
,
Miyoshi
H
,
Mizukami
J
,
Sugita
T
.
Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1
.
FEBS Lett
.
2000
;
474
(
2-3
):
141
-
145
.
26.
Zhang
J
,
Cao
L
,
Lyu
LJ
, et al
.
Regulation of TAK-TAB complex activation through ubiquitylation
.
Front Biosci
.
2024
;
29
(
5
):
169
.
27.
Charlaftis
N
,
Suddason
T
,
Wu
XF
,
Anwar
S
,
Karin
M
,
Gallagher
E
.
The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines
.
Embo J
.
2014
;
33
(
21
):
2581
-
2596
.
28.
Theivanthiran
B
,
Kathania
M
,
Zeng
MH
, et al
.
The E3 ubiquitin ligase Itch inhibits p38α signaling and skin inflammation through the ubiquitylation of Tab1
.
Sci Signal
.
2015
;
8
(
365
):
ra22
.
29.
Schattner
M
.
Platelet TLR4 at the crossroads of thrombosis and the innate immune response
.
J Leukoc Biol
.
2019
;
105
(
5
):
873
-
880
.
30.
Anand
PK
,
Malireddi
RK
,
Lukens
JR
, et al
.
NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens
.
Nature
.
2012
;
488
(
7411
):
389
-
393
.
31.
Hara
H
,
Seregin
SS
,
Yang
D
, et al
.
The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection
.
Cell
.
2018
;
175
(
6
):
1651
-
1664.e14
.
32.
Ghimire
L
,
Paudel
S
,
Jin
L
,
Baral
P
,
Cai
S
,
Jeyaseelan
S
.
NLRP6 negatively regulates pulmonary host defense in Gram-positive bacterial infection through modulating neutrophil recruitment and function
.
PLoS Pathog
.
2018
;
14
(
9
):
e1007308
.
33.
Cai
S
,
Paudel
S
,
Jin
L
, et al
.
NLRP6 modulates neutrophil homeostasis in bacterial pneumonia-derived sepsis
.
Mucosal Immunol
.
2021
;
14
(
3
):
574
-
584
.
34.
Ghimire
L
,
Paudel
S
,
Le
J
, et al
.
NLRP6 negatively regulates host defense against polymicrobial sepsis
.
Front Immunol
.
2024
;
15
:
1248907
.
35.
Shannon
O
.
The role of platelets in sepsis
.
Res Pract Thromb Haemost
.
2021
;
5
(
1
):
27
-
37
.
36.
Carestia
A
,
Kaufman
T
,
Schattner
M
.
Platelets: new bricks in the building of neutrophil extracellular traps
.
Front Immunol
.
2016
;
7
:
271
.
37.
Wienkamp
AK
,
Erpenbeck
L
,
Rossaint
J
.
Platelets in the NETworks interweaving inflammation and thrombosis
.
Front Immunol
.
2022
;
13
:
953129
.
38.
McDonald
B
,
Davis
RP
,
Kim
SJ
, et al
.
Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice [published correction appears in Blood. 2022;139(6):952]
.
Blood
.
2017
;
129
(
10
):
1357
-
1367
.
39.
Akinosoglou
K
,
Alexopoulos
D
.
Use of antiplatelet agents in sepsis: a glimpse into the future
.
Thromb Res
.
2014
;
133
(
2
):
131
-
138
.
40.
Wang
Y
,
Ouyang
Y
,
Liu
B
,
Ma
X
,
Ding
R
.
Platelet activation and antiplatelet therapy in sepsis: A narrative review
.
Thromb Res
.
2018
;
166
:
28
-
36
.
41.
Liu
T
,
Zhang
L
,
Joo
D
,
Sun
SC
.
NF-κ signaling in inflammation
.
Signal Transduct Target Ther
.
2017
;
2
:
17023
.
42.
Guo
Q
,
Jin
Y
,
Chen
X
, et al
.
NF-κ in biology and targeted therapy: new insights and translational implications
.
Signal Transduct Target Ther
.
2024
;
9
(
1
):
53
.
43.
Oeckinghaus
A
,
Ghosh
S
.
The NF-kappaB family of transcription factors and its regulation
.
Cold Spring Harb Perspect Biol
.
2009
;
1
(
4
):
a000034
.
44.
Yamaguchi
K
,
Shirakabe
K
,
Shibuya
H
, et al
.
Identification of a member of the MAPKKK family as a potential mediator of Tgf-beta signal-transduction
.
Science
.
1995
;
270
(
5244
):
2008
-
2011
.
45.
Beinke
S
,
Ley
SC
.
Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology
.
Biochem J
.
2004
;
382
(
Pt 2
):
393
-
409
.
46.
Karin
M
,
Delhase
M
.
The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling
.
Semin Immunol
.
2000
;
12
(
1
):
85
-
98
.
47.
Kojok
K
,
El-Kadiry
AE
,
Merhi
Y
.
Role of NF-κ in platelet function
.
Int J Mol Sci
.
2019
;
20
(
17
):
4185
.
48.
Karim
ZA
,
Zhang
J
,
Banerjee
M
, et al
.
IκB kinase phosphorylation of SNAP-23 controls platelet secretion
.
Blood
.
2013
;
121
(
22
):
4567
-
4574
.
49.
Williams
CM
,
Li
Y
,
Brown
E
,
Poole
AW
.
Platelet-specific deletion of SNAP23 ablates granule secretion, substantially inhibiting arterial and venous thrombosis in mice
.
Blood Adv
.
2018
;
2
(
24
):
3627
-
3636
.
50.
Sun
L
,
Chen
ZJ
.
The novel functions of ubiquitination in signaling [published correction appears in Curr Opin Cell Biol. 2004;16(3):339-40]
.
Curr Opin Cell Biol
.
2004
;
16
(
2
):
119
-
126
.
51.
Chen
IT
,
Hsu
PH
,
Hsu
WC
,
Chen
NJ
,
Tseng
PH
.
Polyubiquitination of transforming growth factor β-activated kinase 1 (TAK1) at lysine 562 residue regulates TLR4-mediated JNK and p38 MAPK activation
.
Sci Rep
.
2015
;
5
:
12300
.
52.
Fan
YH
,
Yu
Y
,
Shi
Y
, et al
.
Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor α- and interleukin-1β-induced IKK/NF-κB and JNK/AP-1 activation
.
J Biol Chem
.
2010
;
285
(
8
):
5347
-
5360
.
53.
Sorrentino
A
,
Thakur
N
,
Grimsby
S
, et al
.
The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner
.
Nat Cell Biol
.
2008
;
10
(
10
):
1199
-
1207
.
54.
Xu
YR
,
Lei
CQ
.
TAK1-TABs complex: a central signalosome in inflammatory responses
.
Front Immunol
.
2020
;
11
:
608976
.
You do not currently have access to this content.
Sign in via your Institution