Abstract
Despite advances in the treatment paradigm of patients with acute myeloid leukemia (AML), TP53-mutated AML represents a molecular subgroup that has failed to improve, with an overall survival of ∼6 months that is independent of age and fitness. Notably, there has been significant elucidation in understanding the biology of the disease and key advancements in the classification and prognostication of these patients. International collaborative efforts for novel clinical interventions are urgently needed to change the standard of care.
References
1.
Steensma
DP
, Bejar
R
, Jaiswal
S
, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes
. Blood
. 2015
;126
(1
):9
-16
.2.
Jaiswal
S
, Natarajan
P
, Silver
AJ
, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease
. N Engl J Med
. 2017
;377
(2
):111
-121
.3.
Lane
DP
. How to lose tumor suppression
. Science
. 2019
;365
(6453
):539
-540
.4.
Zhu
J
, Sammons
MA
, Donahue
G
, et al. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth
. Nature
. 2015
;525
(7568
):206
-211
.5.
Boettcher
S
, Miller
PG
, Sharma
R
, et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies
. Science
. 2019
;365
(6453
):599
-604
.6.
Chen
S
, Wang
Q
, Yu
H
, et al. Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway
. Nat Commun
. 2019
;10
(1
):5649
.7.
Bernard
E
, Nannya
Y
, Hasserjian
RP
, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
. Nat Med
. 2020
;26
(10
):1549
-1556
.8.
Weinberg
OK
, Siddon
A
, Madanat
YF
, et al. TP53 mutation defines a unique subgroup within complex karyotype de novo and therapy-related MDS/AML
. Blood Adv
. 2022
;6
(9
):2847
-2853
.9.
Grob
T
, Al Hinai
ASA
, Sanders
MA
, et al. Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome
. Blood
. 2022
;139
(15
):2347
-2354
.10.
Aguirre
LE
, Al Ali
N
, Jain
AG
, et al. Characterization of TP53-mutated myelodysplastic syndromes and impact of allelic status and concurrent cytogenetic abnormalities on survival outcomes [abstract]
. Blood
. 2022
;140
(suppl 1
):4034
-4035
.11.
Stengel
A
, Meggendorfer
M
, Walter
W
, et al. Interplay of TP53 allelic state, blast count, and complex karyotype on survival of patients with AML and MDS
. Blood Adv
. 2023
;7
(18
):5540
-5548
.12.
Stengel
A
, Haferlach
T
, Baer
C
, et al. Specific subtype distribution with impact on prognosis of TP53 single-hit and double-hit events in AML and MDS
. Blood Adv
. 2023
;7
(13
):2952
-2956
.13.
Jaiswal
S
, Fontanillas
P
, Flannick
J
, et al. Age-related clonal hematopoiesis associated with adverse outcomes
. N Engl J Med
. 2014
;371
(26
):2488
-2498
.14.
Weeks
LD
, Niroula
A
, Neuberg
D
, et al. Prediction of risk for myeloid malignancy in clonal hematopoiesis
. NEJM Evid
. 2023
;2
(5
).15.
Gillis
NK
, Ball
M
, Zhang
Q
, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study
. Lancet Oncol
. 2017
;18
(1
):112
-121
.16.
Takahashi
K
, Wang
F
, Kantarjian
H
, et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study
. Lancet Oncol
. 2017
;18
(1
):100
-111
.17.
Desai
P
, Mencia-Trinchant
N
, Savenkov
O
, et al. Somatic mutations precede acute myeloid leukemia years before diagnosis
. Nat Med
. 2018
;24
(7
):1015
-1023
.18.
Abelson
S
, Collord
G
, Ng
SWK
, et al. Prediction of acute myeloid leukaemia risk in healthy individuals
. Nature
. 2018
;559
(7714
):400
-404
.19.
Bolton
KL
, Ptashkin
RN
, Gao
T
, et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis
. Nat Genet
. 2020
;52
(11
):1219
-1226
.20.
Kwan
TT
, Oza
AM
, Tinker
AV
, et al. Preexisting TP53-variant clonal hematopoiesis and risk of secondary myeloid neoplasms in patients with high-grade ovarian cancer treated with rucaparib
. JAMA Oncol
. 2021
;7
(12
):1772
-1781
.21.
Watson
CJ
, Papula
AL
, Poon
GYP
, et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis
. Science
. 2020
;367
(6485
):1449
-1454
.22.
Zhao
Z
, Zuber
J
, Diaz-Flores
E
, et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal
. Genes Dev
. 2010
;24
(13
):1389
-1402
.23.
Zhang
J
, Kong
G
, Rajagopalan
A
, et al. p53-/- synergizes with enhanced NrasG12D signaling to transform megakaryocyte-erythroid progenitors in acute myeloid leukemia
. Blood
. 2017
;129
(3
):358
-370
.24.
Wong
TN
, Ramsingh
G
, Young
AL
, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia
. Nature
. 2015
;518
(7540
):552
-555
.25.
Kennedy
AL
, Myers
KC
, Bowman
J
, et al. Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome
. Nat Commun
. 2021
;12
(1
):1334
.26.
Xia
J
, Miller
CA
, Baty
J
, et al. Somatic mutations and clonal hematopoiesis in congenital neutropenia
. Blood
. 2018
;131
(4
):408
-416
.27.
Sallman
DA
, McLemore
AF
, Aldrich
AL
, et al. TP53 mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype
. Blood
. 2020
;136
(24
):2812
-2823
.28.
Williams
P
, Basu
S
, Garcia-Manero
G
, et al. The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia
. Cancer
. 2019
;125
(9
):1470
-1481
.29.
Jambhekar
A
, Ackerman
EE
, Alpay
BA
, Lahav
G
, Lovitch
SB
. Comparison of TP53 mutations in myelodysplasia and acute leukemia suggests divergent roles in initiation and progression
. medRxiv
. Preprint posted online 5 September 2023
.30.
Morganti
S
, Gibson
CJ
, Jin
Q
, et al. Prevalence, dynamics, and prognostic role of clonal hematopoiesis of indeterminate potential in patients with breast cancer
. J Clin Oncol
. 2024
:JCO2301071
.31.
Khoury
JD
, Solary
E
, Abla
O
, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms
. Leukemia
. 2022
;36
(7
):1703
-1719
.32.
Arber
DA
, Orazi
A
, Hasserjian
RP
, et al. International Consensus Classification of myeloid neoplasms and acute leukemia: integrating morphological, clinical, and genomic data
. Blood
. 2022
;140
(11
):1200
-1228
.33.
Bernard
E
, Nannya
Y
, Hasserjian
RP
, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
. Nat Med
. 2020
;26
(10
):1549
-1556
.34.
Bahaj
W
, Kewan
T
, Gurnari
C
, et al. Novel scheme for defining the clinical implications of TP53 mutations in myeloid neoplasia
. J Hematol Oncol
. 2023
;16
(1
):91
.35.
Sallman
DA
, Komrokji
R
, Vaupel
C
, et al. Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes
. Leukemia
. 2016
;30
(3
):666
-673
.36.
Daver
NG
, Maiti
A
, Kadia
TM
, et al. TP53-mutated myelodysplastic syndrome and acute myeloid leukemia: biology, current therapy, and future directions
. Cancer Discov
. 2022
;12
(11
):2516
-2529
.37.
DiGennaro
J
, Sallman
DA
. TP53-mutated myelodysplastic syndrome and acute myeloid leukemia: current guidelines, therapies, and future considerations
. Acta Haematol
. 2024
;147
(2
):175
-185
.38.
Daver
NG
, Iqbal
S
, Renard
C
, et al. Treatment outcomes for newly diagnosed, treatment-naive TP53-mutated acute myeloid leukemia: a systematic review and meta-analysis
. J Hematol Oncol
. 2023
;16
(1
):19
.39.
Welch
JS
, Petti
AA
, Miller
CA
, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes
. N Engl J Med
. 2016
;375
(21
):2023
-2036
.40.
DiNardo
CD
, Jonas
BA
, Pullarkat
V
, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia
. N Engl J Med
. 2020
;383
(7
):617
-629
.41.
Shimony
S
, Garcia
JS
, Keating
J
, et al. Molecular ontogeny underlies the benefit of adding venetoclax to hypomethylating agents in newly diagnosed AML patients
. Leukemia
. 2024
;38
(7
):1494
-1500
.42.
Gruszczynska
A
, Maiti
A
, Miller
CA
, et al. Molecular responses in decitabine- and decitabine/venetoclax-treated patients with acute myeloid leukemia and myelodysplastic syndromes
. Haematologica
. 2024
;109
(8
):2653
-2659
.43.
Short
NJ
, Montalban-Bravo
G
, Hwang
H
, et al. Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia
. Blood Adv
. 2020
;4
(22
):5681
-5689
.44.
Lemoli
RM
, Montesinos
P
, Jain
A
. Real-world experience with CPX-351 in high-risk acute myeloid leukemia
. Crit Rev Oncol Hematol
. 2023
;185
:103984
.45.
Stengel
A
, Haferlach
T
, Baer
C
, et al. Specific subtype distribution with impact on prognosis of TP53 single-hit and double-hit events in AML and MDS
. Blood Adv
. 2023
;7
(13
):2952
-2956
.46.
Sallman
DA
, DeZern
AE
, Garcia-Manero
G
, et al. Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes
. J Clin Oncol
. 2021
;39
(14
):1584
-1594
.47.
Cluzeau
T
, Sebert
M
, Rahme
R
, et al. Eprenetapopt plus azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia: a phase II study by the Groupe Francophone des Myelodysplasies (GFM)
. J Clin Oncol
. 2021
;39
(14
):1575
-1583
.48.
Daver
NG
, Vyas
P
, Kambhampati
S
, et al. Tolerability and efficacy of the anticluster of differentiation 47 antibody magrolimab combined with azacitidine in patients with previously untreated AML: phase Ib results
. J Clin Oncol
. 2023
;41
(31
):4893
-4904
.49.
Mishra
A
, Tamari
R
, DeZern
AE
, et al. Eprenetapopt plus azacitidine after allogeneic hematopoietic stem-cell transplantation for TP53-mutant acute myeloid leukemia and myelodysplastic syndromes
. J Clin Oncol
. 2022
;40
(34
):3985
-3993
.50.
Garcia-Manero
G
, Goldberg
AD
, Winer
ES
, et al. Eprenetapopt combined with venetoclax and azacitidine in TP53-mutated acute myeloid leukaemia: a phase 1, dose-finding and expansion study
. Lancet Haematol
. 2023
;10
(4
):e272
-e283
.51.
Sallman
DA
, Komrokji
RS
, DeZern
AE
, et al. Long term follow-up and combined phase 2 results of eprenetapopt (APR-246) and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia (AML) [abstract]
. Blood
. 2021
;138
(suppl 1
):246
.52.
Aprea therapeutics announces results of primary endpoint from phase 3 trial of eprenetapopt in TP53 mutant myelodysplastic syndromes (MDS). News Release. Aprea Therapeutics; December 28, 2020
. Accessed 24 September 2024. https://ir.aprea.com/news-releases/news-release-details/aprea-therapeutics-announces-results-primary-endpoint-phase-3.53.
Kruer
TL
, Quintana
A
, Ferrall-Fairbanks
M
, et al. XPO1 overexpression is a mechanism of resistance to eprenetapopt and 5-azacitidine therapy that can be therapeutically exploited for the treatment of TP53 mutated myeloid malignancies [abstract]
. Blood
. 2022
;140
(suppl 1
):99
-100
.54.
Carter
BZ
, Mak
PY
, Ke
B
, et al. Selective targeting of TP53-Y220C mutant AML by PC14586 results in TP53 wild-type conformation and synergistical apoptosis induction by concomitant inhibition of XPO-1, MDM2, or BCL-2 [abstract]
. Blood
. 2023
;142
(suppl 1
):2261
.55.
Sallman
DA
, Al Malki
MM
, Asch
AS
, et al. Magrolimab in combination with azacitidine in patients with higher-risk myelodysplastic syndromes: final results of a phase Ib study
. J Clin Oncol
. 2023
;41
(15
):2815
-2826
.56.
Gilead
. Magrolimab trials summary
. Accessed 24 September 2024. https://www.gilead.com/-/media/files/pdfs/other/magrolimab-trials-summary.pdf.57.
Zeidan
AM
, Xiao
Z
, Sanz
G
, et al. Primary results of the phase III stimulus-MDS2 study of sabatolimab + azacitidine vs placebo + azacitidine as frontline therapy for patients with higher-risk MDS or CMML-2. Abstract presented at: 29th European Hematology Association Congress. June 13-16, 2024
. Madrid, Spain.58.
Lindsley
RC
, Saber
W
, Mar
BG
, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation
. N Engl J Med
. 2017
;376
(6
):536
-547
.59.
Versluis
J
, Saber
W
, Tsai
HK
, et al. Allogeneic hematopoietic cell transplantation improves outcome in myelodysplastic syndrome across high-risk genetic subgroups: genetic analysis of the Blood and Marrow Transplant Clinical Trials Network 1102 study
. J Clin Oncol
. 2023
;41
(28
):4497
-4510
.60.
Loke
J
, Labopin
M
, Craddock
C
, et al. Additional cytogenetic features determine outcome in patients allografted for TP53 mutant acute myeloid leukemia
. Cancer
. 2022
;128
(15
):2922
-2931
.61.
Yoshizato
T
, Nannya
Y
, Atsuta
Y
, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation
. Blood
. 2017
;129
(17
):2347
-2358
.62.
Nawas
MT
, Kosuri
S
. Utility or futility? A contemporary approach to allogeneic hematopoietic cell transplantation for TP53-mutated MDS/AML
. Blood Adv
. 2024
;8
(3
):553
-561
.63.
Badar
T
, Atallah
E
, Shallis
RM
, et al. Outcomes of TP53-mutated AML with evolving frontline therapies: impact of allogeneic stem cell transplantation on survival
. Am J Hematol
. 2022
;97
(7
):E232
-E235
.64.
Badar
T
, Atallah
E
, Shallis
R
, et al. Survival of TP53-mutated acute myeloid leukemia patients receiving allogeneic stem cell transplantation after first induction or salvage therapy: results from the Consortium on Myeloid Malignancies and Neoplastic Diseases (COMMAND)
. Leukemia
. 2023
;37
(4
):799
-806
.65.
Versluis
J
, Lindsley
RC
. Transplant for TP53-mutated MDS and AML: because we can or because we should?
. Hematology Am Soc Hematol Educ Program
. 2022
;2022
(1
):522
-527
.66.
Hunter
AM
, Komrokji
RS
, Yun
S
, et al. Baseline and serial molecular profiling predicts outcomes with hypomethylating agents in myelodysplastic syndromes
. Blood Adv
. 2021
;5
(4
):1017
-1028
.67.
Yun
S
, Geyer
SM
, Komrokji
RS
, et al. Prognostic significance of serial molecular annotation in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML)
. Leukemia
. 2021
;35
(4
):1145
-1155
.© 2025 American Society of Hematology. Published by Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
2025
You do not currently have access to this content.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal