• Tumor cells exhibit widespread lncRNA dependencies uncovered by CRISPR-Cas13d screening.

  • Our IsoScan platform precisely maps functional lncRNA isoforms driving oncogenic activity.

Abstract

Long noncoding RNAs (lncRNAs) are a significant yet largely uncharted component of the cancer transcriptome, with their isoform-specific functions remaining poorly understood. In this study, we used RNA-targeting CRISPR-Cas13d to uncover and characterize hundreds of tumor-essential lncRNA (te-lncRNA) isoforms with clinical relevance. Focusing on multiple myeloma (MM), we targeted the lncRNA transcriptome expressed in tumor cells from patients with MM and revealed both MM-specific and pan-cancer dependencies across diverse cancer cell lines, which we further validated in animal models. Additionally, we mapped the subcellular localization of these te-lncRNAs, identifying >30 cytosolic isoforms that proved essential when targeted by cytosol-localized Cas13d. Notably, a specific isoform of small nucleolar RNA host gene 6, enriched in the endoplasmic reticulum, interacts with heat shock proteins to maintain cellular proteostasis. We also integrated functional and clinical data into the publicly accessible LongDEP Portal, providing a valuable resource for the research community. Our study offers a comprehensive characterization of te-lncRNAs, underscoring their oncogenic roles and therapeutic potential.

1.
Mattick
JS
,
Amaral
PP
,
Carninci
P
, et al
.
Long non-coding RNAs: definitions, functions, challenges and recommendations
.
Nat Rev Mol Cell Biol
.
2023
;
24
(
6
):
430
-
447
.
2.
Amaral
P
,
Carbonell-Sala
S
,
De La Vega
FM
, et al
.
The status of the human gene catalogue
.
Nature
.
2023
;
622
(
7981
):
41
-
47
.
3.
Engreitz
JM
,
Ollikainen
N
,
Guttman
M
.
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression
.
Nat Rev Mol Cell Biol
.
2016
;
17
(
12
):
756
-
770
.
4.
Carlevaro-Fita
J
,
Johnson
R
.
Global positioning system: understanding long noncoding RNAs through subcellular localization
.
Mol Cell
.
2019
;
73
(
5
):
869
-
883
.
5.
Huarte
M
.
The emerging role of lncRNAs in cancer
.
Nat Med
.
2015
;
21
(
11
):
1253
-
1261
.
6.
Gulla
A
,
Anderson
KC
.
Multiple myeloma: the (r)evolution of current therapy and a glance into future
.
Haematologica
.
2020
;
105
(
10
):
2358
-
2367
.
7.
Samur
MK
,
Minvielle
S
,
Gulla
A
, et al
.
Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma
.
Leukemia
.
2018
;
32
(
12
):
2626
-
2635
.
8.
Hu
Y
,
Lin
J
,
Fang
H
, et al
.
Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma
.
Leukemia
.
2018
;
32
(
10
):
2250
-
2262
.
9.
Amodio
N
,
Stamato
MA
,
Juli
G
, et al
.
Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity
.
Leukemia
.
2018
;
32
(
9
):
1948
-
1957
.
10.
Taiana
E
,
Favasuli
V
,
Ronchetti
D
, et al
.
Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma
.
Leukemia
.
2020
;
34
(
1
):
234
-
244
.
11.
Carrasco-Leon
A
,
Ezponda
T
,
Meydan
C
, et al
.
Characterization of complete lncRNAs transcriptome reveals the functional and clinical impact of lncRNAs in multiple myeloma
.
Leukemia
.
2021
;
35
(
5
):
1438
-
1450
.
12.
Grillone
K
,
Ascrizzi
S
,
Cremaschi
P
, et al
.
An unbiased lncRNAs dropout CRISPR-Cas9 screen reveals RP11-350G8.5 as a novel therapeutic target for multiple myeloma
.
Blood
.
2024
;
144
(
16
):
1705
-
1721
.
13.
Morelli
E
,
Biamonte
L
,
Federico
C
, et al
.
Therapeutic vulnerability of multiple myeloma to MIR17PTi, a first-in-class inhibitor of pri-miR-17-92
.
Blood
.
2018
;
132
(
10
):
1050
-
1063
.
14.
Morelli
E
,
Fulciniti
M
,
Samur
MK
, et al
.
A MIR17HG-derived long noncoding RNA provides an essential chromatin scaffold for protein interaction and myeloma growth
.
Blood
.
2023
;
141
(
4
):
391
-
405
.
15.
Agirre
X
.
RROL lncRNA role in multiple myeloma
.
Blood
.
2023
;
141
(
4
):
328
-
330
.
16.
Zhang
C
,
Konermann
S
,
Brideau
NJ
, et al
.
Structural basis for the RNA-guided ribonuclease activity of CRISPR-Cas13d
.
Cell
.
2018
;
175
(
1
):
212
-
223.e17
.
17.
Liang
WW
,
Muller
S
,
Hart
SK
, et al
.
Transcriptome-scale RNA-targeting CRISPR screens reveal essential lncRNAs in human cells
.
Cell
.
2024
;
187
(
26
):
7637
-
7654.e29
.
18.
Morelli
E
,
Ribeiro
CF
,
Rodrigues
SD
, et al
.
Targeting acetyl-CoA carboxylase suppresses de novo lipogenesis and tumor cell growth in multiple myeloma
.
Clin Cancer Res
.
2025
;
31
(
10
):
1975
-
1987
.
19.
Morelli
E
,
Gulla
A
,
Amodio
N
, et al
.
CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) to explore the oncogenic lncRNA network
.
Methods Mol Biol
.
2021
;
2348
:
189
-
204
.
20.
Mayer
A
,
Churchman
LS
.
A detailed protocol for subcellular RNA sequencing (subRNA-seq)
.
Curr Protoc Mol Biol
.
2017
;
120
(
4
):
4.29.1
-
4.29.18
.
21.
Shaffer
AL
,
Emre
NC
,
Lamy
L
, et al
.
IRF4 addiction in multiple myeloma
.
Nature
.
2008
;
454
(
7201
):
226
-
231
.
22.
Zheng
H
,
Wang
G
,
Wang
Y
,
Liu
J
,
Ma
G
,
Du
J
.
Systematic analysis reveals a pan-cancer SNHG family signature predicting prognosis and immunotherapy response
.
iScience
.
2023
;
26
(
10
):
108055
.
23.
Liu
SJ
,
Horlbeck
MA
,
Cho
SW
, et al
.
CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells
.
Science
.
2017
;
355
(
6320
):
aah7111
.
24.
Kaur
J
,
Salehen
N
,
Norazit
A
, et al
.
Tumor suppressive effects of GAS5 in cancer cells
.
Noncoding RNA
.
2022
;
8
(
3
):
39
.
25.
Peng
W
,
Jiang
J
,
Fu
J
,
Duan
H
,
Wang
J
,
Duan
C
.
lncRNA GMDS-AS1 restrains lung adenocarcinoma progression via recruiting TAF15 protein to stabilize SIRT1 mRNA
.
Epigenomics
.
2023
;
15
(
7
):
417
-
434
.
26.
Cao
C
,
Zhang
T
,
Zhang
D
, et al
.
The long non-coding RNA, SNHG6-003, functions as a competing endogenous RNA to promote the progression of hepatocellular carcinoma
.
Oncogene
.
2017
;
36
(
8
):
1112
-
1122
.
27.
Li
XL
,
Subramanian
M
,
Jones
MF
, et al
.
Long noncoding RNA PURPL suppresses basal p53 levels and promotes tumorigenicity in colorectal cancer
.
Cell Rep
.
2017
;
20
(
10
):
2408
-
2423
.
28.
de Matos Simoes
R
,
Shirasaki
R
,
Downey-Kopyscinski
SL
, et al
.
Genome-scale functional genomics identify genes preferentially essential for multiple myeloma cells compared to other neoplasias
.
Nat Cancer
.
2023
;
4
(
5
):
754
-
773
.
29.
Mas-Ponte
D
,
Carlevaro-Fita
J
,
Palumbo
E
,
Hermoso Pulido
T
,
Guigo
R
,
Johnson
R
.
LncATLAS database for subcellular localization of long noncoding RNAs
.
RNA
.
2017
;
23
(
7
):
1080
-
1087
.
30.
Gruber
C
,
Krautner
L
,
Bergant
V
, et al
.
Engineered, nucleocytoplasmic shuttling Cas13d enables highly efficient cytosolic RNA targeting
.
Cell Discov
.
2024
;
10
(
1
):
42
.
31.
Williamson
CD
,
Wong
DS
,
Bozidis
P
,
Zhang
A
,
Colberg-Poley
AM
.
Isolation of endoplasmic reticulum, mitochondria, and mitochondria-associated membrane and detergent resistant membrane fractions from transfected cells and from human cytomegalovirus-infected primary fibroblasts
.
Curr Protoc Cell Biol
.
2015
;
68
(
3
):
3.27.1
-
3.27.33
.
32.
Fazal
FM
,
Han
S
,
Parker
KR
, et al
.
Atlas of subcellular RNA localization revealed by APEX-seq
.
Cell
.
2019
;
178
(
2
):
473
-
490.e26
.
33.
Chu
C
,
Chang
HY
.
ChIRP-MS: RNA-directed proteomic discovery
.
Methods Mol Biol
.
2018
;
1861
:
37
-
45
.
34.
Chu
C
,
Zhang
QC
,
da Rocha
ST
, et al
.
Systematic discovery of Xist RNA binding proteins
.
Cell
.
2015
;
161
(
2
):
404
-
416
.
35.
Xu
GS
,
Lin
YN
,
Zeng
Q
, et al
.
HSP90-regulated CHIP/TRIM21/p21 axis involves in the senescence of osteosarcoma cells
.
Protein Pept Lett
.
2023
;
30
(
6
):
513
-
519
.
36.
Corre
J
,
Perrot
A
,
Caillot
D
, et al
.
del(17p) without TP53 mutation confers a poor prognosis in intensively treated newly diagnosed patients with multiple myeloma
.
Blood
.
2021
;
137
(
9
):
1192
-
1195
.
37.
Goyal
A
,
Myacheva
K
,
Groß
M
,
Klingenberg
M
,
Duran Arqué
B
,
Diederichs
S
.
Challenges of CRISPR/Cas9 applications for long non-coding RNA genes
.
Nucleic Acids Res
.
2017
;
45
(
3
):
e12
.
38.
Montero
JJ
,
Trozzo
R
,
Sugden
M
, et al
.
Genome-scale pan-cancer interrogation of lncRNA dependencies using CasRx
.
Nat Methods
.
2024
;
21
(
4
):
584
-
596
.
39.
Childs-Disney
JL
,
Yang
X
,
Gibaut
QMR
,
Tong
Y
,
Batey
RT
,
Disney
MD
.
Targeting RNA structures with small molecules
.
Nat Rev Drug Discov
.
2022
;
21
(
10
):
736
-
762
.
40.
Tong
Y
,
Lee
Y
,
Liu
X
, et al
.
Programming inactive RNA-binding small molecules into bioactive degraders
.
Nature
.
2023
;
618
(
7963
):
169
-
179
.
41.
Sha
Z
,
Goldberg
AL
.
Multiple myeloma cells are exceptionally sensitive to heat shock, which overwhelms their proteostasis network and induces apoptosis
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
35
):
21588
-
21597
.
You do not currently have access to this content.
Sign in via your Institution