• Early B-cell differentiation arrest is associated with resistance to InO in B-cell ALL.

  • B-lineage transcription factor EBF1 directly regulates the expression of CD22 and modulates ALL sensitivity to InO.

Abstract

Inotuzumab ozogamicin (InO) is an antibody-calicheamicin conjugate with high efficacy in lymphoid malignancies. It targets the B-cell surface protein CD22, which is expressed in most B-cell acute lymphoblastic leukemia (B-ALL) cases, albeit with variable intensity. However, factors governing CD22 expression and thus leukemia sensitivity to InO remain incompletely understood. Using multiomic characterization of 196 human B-ALL samples, coupled with ex vivo InO sensitivity profiling, we showed that early leukemia differentiation arrest at the pre–pro-B stage is associated with resistance to InO. Screening of 1639 transcription factor genes identified early B-cell factor 1 (EBF1) as a key regulator of CD22 expression (false discovery rate of 7.1 × 10−4). When comparing the assay for transposase-accessible chromatin with sequencing profiling results of the most InO-sensitive and -resistant cases (50% lethal concentration <10th vs >90th percentile, n = 18), the binding motif for EBF1 was strikingly enriched in regions with differential open chromatin status (P = 8 × 10−174). CRISPR interference targeting EBF1 binding sites at the CD22 locus led to an ∼50-fold reduction in cell surface CD22 expression and, consequently, an ∼22-fold increase in InO resistance in ALL cell lines. Interestingly, within BCR::ABL1 ALL, we observed intrasubtype heterogeneity linked to EBF1 transcriptional downregulation (P = 1.1 × 10−15) and/or somatic alteration (P = .004), which led to reduced CD22 expression (P = 8.3 × 10−11) and ex vivo and in vivo resistance to InO. Collectively, these findings point to the direct impact of EBF1 on CD22 expression during B-cell development, which, in turn, contributes to interpatient variability in InO response, even within the same subtype of B-ALL.

1.
DiJoseph
JF
,
Popplewell
A
,
Tickle
S
, et al
.
Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22
.
Cancer Immunol Immunother
.
2005
;
54
(
1
):
11
-
24
.
2.
Dijoseph
JF
,
Dougher
MM
,
Armellino
DC
,
Evans
DY
,
Damle
NK
.
Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia
.
Leukemia
.
2007
;
21
(
11
):
2240
-
2245
.
3.
Kantarjian
HM
,
DeAngelo
DJ
,
Stelljes
M
, et al
.
Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia
.
N Engl J Med
.
2016
;
375
(
8
):
740
-
753
.
4.
Jabbour
E
,
Sasaki
K
,
Ravandi
F
, et al
.
Chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD, with or without blinatumomab, is highly effective in patients with Philadelphia chromosome-negative acute lymphoblastic leukemia in first salvage
.
Cancer
.
2018
;
124
(
20
):
4044
-
4055
.
5.
Pennesi
E
,
Michels
N
,
Brivio
E
, et al
.
Inotuzumab ozogamicin as single agent in pediatric patients with relapsed and refractory acute lymphoblastic leukemia: results from a phase II trial
.
Leukemia
.
2022
;
36
(
6
):
1516
-
1524
.
6.
O'Brien
MM
,
Ji
L
,
Shah
NN
, et al
.
Phase II trial of inotuzumab ozogamicin in children and adolescents with relapsed or refractory B-cell acute lymphoblastic leukemia: Children's Oncology Group protocol AALL1621
.
J Clin Oncol
.
2022
;
40
(
9
):
956
-
967
.
7.
DiJoseph
JF
,
Armellino
DC
,
Boghaert
ER
, et al
.
Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies
.
Blood
.
2004
;
103
(
5
):
1807
-
1814
.
8.
Zheng
S
,
Gillespie
E
,
Naqvi
AS
, et al
.
Modulation of CD22 protein expression in childhood leukemia by pervasive splicing aberrations: implications for CD22-directed immunotherapies
.
Blood Cancer Discov
.
2022
;
3
(
2
):
103
-
115
.
9.
Zhao
Y
,
Short
NJ
,
Kantarjian
HM
, et al
.
Genomic determinants of response and resistance to inotuzumab ozogamicin in B-cell ALL
.
Blood
.
2024
;
144
(
1
):
61
-
73
.
10.
Reinert
J
,
Beitzen-Heineke
A
,
Wethmar
K
,
Stelljes
M
,
Fiedler
W
,
Schwartz
S
.
Loss of CD22 expression and expansion of a CD22dim subpopulation in adults with relapsed/refractory B-lymphoblastic leukaemia after treatment with inotuzumab-ozogamicin
.
Ann Hematol
.
2021
;
100
(
11
):
2727
-
2732
.
11.
Fry
TJ
,
Shah
NN
,
Orentas
RJ
, et al
.
CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy
.
Nat Med
.
2018
;
24
(
1
):
20
-
28
.
12.
Wintering
A
,
Ishiyama
K
,
Tamaki
S
, et al
.
CD22low/Bcl-2high expression identifies poor response to inotuzumab ozogamicin in relapsed/refractory acute lymphoblastic leukemia
.
Blood Adv
.
2023
;
7
(
2
):
251
-
255
.
13.
Sartor
C
,
Arpinati
M
,
Chirumbolo
G
, et al
.
Baseline cluster of differentiation 22 fluorescent intensity correlates with patient outcome after inotuzumab ozogamicin treatment
.
Hematol Oncol
.
2022
;
40
(
4
):
734
-
742
.
14.
Rubinstein
JD
,
O'Brien
MM
.
Inotuzumab ozogamicin in B-cell precursor acute lymphoblastic leukemia: efficacy, toxicity, and practical considerations
.
Front Immunol
.
2023
;
14
:
1237738
.
15.
Brivio
E
,
Locatelli
F
,
Lopez-Yurda
M
, et al
.
A phase 1 study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study)
.
Blood
.
2021
;
137
(
12
):
1582
-
1590
.
16.
Nitschke
L
,
Carsetti
R
,
Ocker
B
,
Köhler
G
,
Lamers
MC
.
CD22 is a negative regulator of B-cell receptor signalling
.
Curr Biol
.
1997
;
7
(
2
):
133
-
143
.
17.
Stoddart
A
,
Ray
RJ
,
Paige
CJ
.
Analysis of murine CD22 during B cell development: CD22 is expressed on B cell progenitors prior to IgM
.
Int Immunol
.
1997
;
9
(
10
):
1571
-
1579
.
18.
Raponi
S
,
De Propris
MS
,
Intoppa
S
, et al
.
Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases
.
Leuk Lymphoma
.
2011
;
52
(
6
):
1098
-
1107
.
19.
Shah
NN
,
Stevenson
MS
,
Yuan
CM
, et al
.
Characterization of CD22 expression in acute lymphoblastic leukemia
.
Pediatr Blood Cancer
.
2015
;
62
(
6
):
964
-
969
.
20.
Huang
X
,
Li
Y
,
Zhang
J
, et al
.
Single-cell systems pharmacology identifies development-driven drug response and combination therapy in B cell acute lymphoblastic leukemia
.
Cancer Cell
.
2024
;
42
(
4
):
552
-
567.e6
.
21.
Gu
Z
,
Churchman
ML
,
Roberts
KG
, et al
.
PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia
.
Nat Genet
.
2019
;
51
(
2
):
296
-
307
.
22.
Escherich
CS
,
Moriyama
T
,
Li
Z
, et al
.
DNTT-mediated DNA damage response drives inotuzumab ozogamicin resistance in B-cell acute lymphoblastic leukemia
.
Blood
.
2025
;
145
(
11
):
1182
-
1194
.
23.
Rowland
L
,
Smart
B
,
Brown
A
, et al
.
Ex vivo drug sensitivity imaging-based platform for primary acute lymphoblastic leukemia cells
.
Bio Protoc
.
2023
;
13
(
15
):
e4731
.
24.
Kantarjian
HM
,
Stock
W
,
Cassaday
RD
, et al
.
Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia in the INO-VATE trial: CD22 pharmacodynamics, efficacy, and safety by baseline CD22
.
Clin Cancer Res
.
2021
;
27
(
10
):
2742
-
2754
.
25.
Zhang
H
,
Zhang
Y
,
Zhou
X
, et al
.
Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen
.
Elife
.
2020
;
9
:
e57858
.
26.
Bentsen
M
,
Goymann
P
,
Schultheis
H
, et al
.
ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation
.
Nat Commun
.
2020
;
11
(
1
):
4267
.
27.
Arber
DA
,
Orazi
A
,
Hasserjian
RP
, et al
.
International Consensus Classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data
.
Blood
.
2022
;
140
(
11
):
1200
-
1228
.
28.
Bastian
L
,
Beder
T
,
Barz
MJ
, et al
.
Developmental trajectories and cooperating genomic events define molecular subtypes of BCR::ABL1-positive ALL
.
Blood
.
2024
;
143
(
14
):
1391
-
1398
.
29.
Kim
JC
,
Chan-Seng-Yue
M
,
Ge
S
, et al
.
Transcriptomic classes of BCR-ABL1 lymphoblastic leukemia
.
Nat Genet
.
2023
;
55
(
7
):
1186
-
1197
.
30.
Stelljes
M
,
Raffel
S
,
Alakel
N
, et al
.
Inotuzumab ozogamicin as induction therapy for patients older than 55 years with Philadelphia chromosome-negative B-precursor ALL
.
J Clin Oncol
.
2024
;
42
(
3
):
273
-
282
.
31.
Lee
SHR
,
Yang
W
,
Gocho
Y
, et al
.
Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response
.
Nat Med
.
2023
;
29
(
1
):
170
-
179
.
32.
Ng
AP
,
Coughlan
HD
,
Hediyeh-Zadeh
S
, et al
.
An Erg-driven transcriptional program controls B cell lymphopoiesis
.
Nat Commun
.
2020
;
11
(
1
):
3013
.
33.
Brady
SW
,
Roberts
KG
,
Gu
Z
, et al
.
The genomic landscape of pediatric acute lymphoblastic leukemia
.
Nat Genet
.
2022
;
54
(
9
):
1376
-
1389
.
You do not currently have access to this content.
Sign in via your Institution