• Chronic NK cell activation with interleukin-15 and activating receptors induces divergent molecular signatures, weakening cytotoxicity.

  • Modulating NK cell KLF2 expression provides resistance to activation-induced dysfunction and alters chemotaxis and homing to the bone marrow.

Abstract

Adoptive transfer of natural killer (NK) cells can induce complete remissions in 30% to 50% of patients with refractory acute myeloid leukemia and lymphoma. Although blood chimerism occurs, attaining functional homing to the site of tumor without exhaustion has been elusive. During chronic infections and tumorigenesis, exposure to activating stimuli weakens the effector activity of NK cells. Despite this knowledge, there is little known about the mechanisms that govern this dysregulation and whether these disparate activating stimuli use distinct pathways to downregulate effector immunity. In this study, we reveal that chronic NK cell activation receptor (NKAR) stimulation and chronic interleukin-15 exposure impart distinct modes of dysregulation, with NKAR stimulation inducing a tissue resident–like state that resembles that of tumor-infiltrating NK cells in patients with cancer. Using loss- and gain-of-function studies, we identify the transcription factor KLF2 as a master regulator of the NK cell response to chronic activation and provide evidence that KLF2 overexpression promotes NK cell cytotoxicity, cytokine production, and chemotaxis and inhibits the development of dysfunctional, tissue resident–like features. Using KLF2 reporter mice, we show that in certain tissues, tissue resident NK cells are predominantly KLF2, whereas circulating NK cells in these tissues are overwhelmingly KLF2+. Lastly, using mixed bone marrow chimeras, we demonstrate that conditional KLF2 deficiency in NK cells leads to altered homing and the acquisition of tissue resident–like features in vivo. Together, these findings highlight the profound changes NK cells undergo during prolonged activation and advance our understanding of how some NK cell therapies fail during malignant relapse.

1.
Wherry
EJ
,
Kurachi
M
.
Molecular and cellular insights into T cell exhaustion
.
Nat Rev Immunol
.
2015
;
15
(
8
):
486
-
499
.
2.
Judge
SJ
,
Murphy
WJ
,
Canter
RJ
.
Characterizing the dysfunctional NK cell: assessing the clinical relevance of exhaustion, anergy, and senescence
.
Front Cell Infect Microbiol
.
2020
;
10
:
49
.
3.
Myers
JA
,
Schirm
D
,
Bendzick
L
, et al
.
Balanced engagement of activating and inhibitory receptors mitigates human NK cell exhaustion
.
JCI Insight
.
2022
;
7
(
15
):
e150079
.
4.
Felices
M
,
Lenvik
AJ
,
McElmurry
R
, et al
.
Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect
.
JCI Insight
.
2018
;
3
:
e96219
.
5.
Gill
S
,
Vasey
AE
,
De Souza
A
, et al
.
Rapid development of exhaustion and down-regulation of eomesodermin limit the antitumor activity of adoptively transferred murine natural killer cells
.
Blood
.
2012
;
119
(
24
):
5758
-
5768
.
6.
Alvarez
M
,
Simonetta
F
,
Baker
J
, et al
.
Regulation of murine NK cell exhaustion through the activation of the DNA damage repair pathway
.
JCI Insight
.
2019
;
4
(
14
):
e127729
.
7.
Zhang
Q
,
Bi
J
,
Zheng
X
, et al
.
Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity
.
Nat Immunol
.
2018
;
19
(
7
):
723
-
732
.
8.
Beldi-Ferchiou
A
,
Lambert
M
,
Dogniaux
S
, et al
.
PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma
.
Oncotarget
.
2016
;
7
(
45
):
72961
-
72977
.
9.
Hsu
J
,
Hodgins
JJ
,
Marathe
M
, et al
.
Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade
.
J Clin Invest
.
2018
;
128
(
10
):
4654
-
4668
.
10.
Carlsten
M
,
Korde
N
,
Kotecha
R
, et al
.
Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma
.
Clin Cancer Res
.
2016
;
22
(
21
):
5211
-
5222
.
11.
Korde
N
,
Carlsten
M
,
Lee
MJ
, et al
.
A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma
.
Haematologica
.
2014
;
99
(
6
):
e81
-
e83
.
12.
Myers
JA
,
Miller
JS
.
Exploring the NK cell platform for cancer immunotherapy
.
Nat Rev Clin Oncol
.
2021
;
18
(
2
):
85
-
100
.
13.
Bachanova
V
,
Sarhan
D
,
DeFor
TE
, et al
.
Haploidentical natural killer cells induce remissions in non-Hodgkin lymphoma patients with low levels of immune-suppressor cells
.
Cancer Immunol Immunother
.
2018
;
67
(
3
):
483
-
494
.
14.
Bachanova
V
,
Cooley
S
,
Defor
TE
, et al
.
Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein
.
Blood
.
2014
;
123
(
25
):
3855
-
3863
.
15.
Dean
I
,
Lee
CYC
,
Tuong
ZK
, et al
.
Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity
.
Nat Commun
.
2024
;
15
(
1
):
683
.
16.
Sun
H
,
Liu
L
,
Huang
Q
, et al
.
Accumulation of tumor-infiltrating CD49a+ NK cells correlates with poor prognosis for human hepatocellular carcinoma
.
Cancer Immunol Res
.
2019
;
7
(
9
):
1535
-
1546
.
17.
Chen
X
,
Chen
Y
,
Xin
Z
, et al
.
Tissue-resident CD69+CXCR6+ natural killer cells with exhausted phenotype accumulate in human non-small cell lung cancer
.
Eur J Immunol
.
2022
;
52
(
12
):
1993
-
2005
.
18.
Russick
J
,
Joubert
PE
,
Gillard-Bocquet
M
, et al
.
Natural killer cells in the human lung tumor microenvironment display immune inhibitory functions
.
J Immunother Cancer
.
2020
;
8
(
2
):
e001054
.
19.
Brownlie
D
,
von Kries
A
,
Valenzano
G
, et al
.
Accumulation of tissue-resident natural killer cells, innate lymphoid cells, and CD8+ T cells towards the center of human lung tumors
.
Oncoimmunology
.
2023
;
12
(
1
):
2233402
.
20.
Skon
CN
,
Lee
JY
,
Anderson
KG
,
Masopust
D
,
Hogquist
KA
,
Jameson
SC
.
Transcriptional downregulation of S1pr1 is required for establishment of resident memory CD8+ T cells
.
Nat Immunol
.
2013
;
14
(
12
):
1285
-
1293
.
21.
Zhu
Z
,
Lou
G
,
Teng
XL
, et al
.
FOXP1 and KLF2 reciprocally regulate checkpoints of stem-like to effector transition in CAR T cells
.
Nat Immunol
.
2024
;
25
(
1
):
117
-
128
.
22.
Tang
F
,
Li
J
,
Qi
L
, et al
.
A pan-cancer single-cell panorama of human natural killer cells
.
Cell
.
2023
;
186
(
19
):
4235
-
4251.e20
.
23.
Weinreich
MA
,
Takada
K
,
Skon
C
,
Reiner
SL
,
Jameson
SC
,
Hogquist
KA
.
KLF2 transcription-factor deficiency in T cells results in unrestrained cytokine production and upregulation of bystander chemokine receptors
.
Immunity
.
2009
;
31
(
1
):
122
-
130
.
24.
Nabekura
T
,
Lanier
LL
.
Tracking the fate of antigen-specific versus cytokine-activated natural killer cells after cytomegalovirus infection
.
J Exp Med
.
2016
;
213
(
12
):
2745
-
2758
.
25.
Wolchok
JD
,
Kluger
H
,
Callahan
MK
, et al
.
Nivolumab plus ipilimumab in advanced melanoma
.
N Engl J Med
.
2013
;
369
(
2
):
122
-
133
.
26.
da Silva
IP
,
Gallois
A
,
Jimenez-Baranda
S
, et al
.
Reversal of NK cell exhaustion in advanced melanoma by Tim-3 blockade
.
Cancer Immunol Res
.
2014
;
2
(
5
):
410
-
422
.
27.
Liu
X
,
Wang
Y
,
Lu
H
, et al
.
Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction
.
Nature
.
2019
;
567
(
7749
):
525
-
529
.
28.
Zhao
Y
,
Cai
H
,
Ding
X
,
Zhou
X
.
An integrative analysis of the single-cell transcriptome identifies DUSP4 as an exhaustion-associated gene in tumor-infiltrating CD8+ T cells
.
Funct Integr Genomics
.
2023
;
23
(
2
):
136
.
29.
Lu
D
,
Liu
L
,
Sun
Y
, et al
.
The phosphatase PAC1 acts as a T cell suppressor and attenuates host antitumor immunity
.
Nat Immunol
.
2020
;
21
(
3
):
287
-
297
.
30.
Corselli
M
,
Saksena
S
,
Nakamoto
M
,
Lomas
WE
,
Taylor
I
,
Chattopadhyay
PK
.
Single cell multiomic analysis of T cell exhaustion in vitro
.
Cytometry A
.
2022
;
101
(
1
):
27
-
44
.
31.
Kumar
BV
,
Ma
W
,
Miron
M
, et al
.
Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites
.
Cell Rep
.
2017
;
20
(
12
):
2921
-
2934
.
32.
Dogra
P
,
Rancan
C
,
Ma
W
, et al
.
Tissue Determinants of Human NK Cell Development, Function, and Residence
.
Cell
.
2020
;
180
(
4
):
749
-
763.e13
.
33.
Bai
Y
,
Hu
M
,
Chen
Z
,
Wei
J
,
Du
H
.
Single-Cell Transcriptome Analysis Reveals RGS1 as a New Marker and Promoting Factor for T-Cell Exhaustion in Multiple Cancers
.
Front Immunol
.
2021
;
12
:
767070
.
34.
Rabacal
W
,
Pabbisetty
SK
,
Hoek
KL
, et al
.
Transcription factor KLF2 regulates homeostatic NK cell proliferation and survival
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
19
):
5370
-
5375
.
35.
Allen
AG
,
Khan
SQ
,
Margulies
CM
, et al
.
A highly efficient transgene knock-in technology in clinically relevant cell types
.
Nat Biotechnol
.
2024
;
42
(
3
):
458
-
469
.
36.
Hart
GT
,
Wang
X
,
Hogquist
KA
,
Jameson
SC
.
Krüppel-like factor 2 (KLF2) regulates B-cell reactivity, subset differentiation, and trafficking molecule expression
.
Proc Natl Acad Sci U S A
.
2011
;
108
:
716
-
721
.
37.
Behr
FM
,
Chuwonpad
A
,
Stark
R
,
van Gisbergen
KPJM
.
Armed and ready: transcriptional regulation of tissue-resident memory CD8 T cells
.
Front Immunol
.
2018
;
9
:
1770
.
38.
Chiossone
L
,
Chaix
J
,
Fuseri
N
,
Roth
C
,
Vivier
E
,
Walzer
T
.
Maturation of mouse NK cells is a 4-stage developmental program
.
Blood
.
2009
;
113
(
22
):
5488
-
5496
.
39.
Torcellan
T
,
Friedrich
C
,
Doucet-Ladevèze
R
, et al
.
Circulating NK cells establish tissue residency upon acute infection of skin and mediate accelerated effector responses to secondary infection
.
Immunity
.
2024
;
57
(
1
):
124
-
140.e7
.
40.
Fagerberg
E
,
Attanasio
J
,
Dien
C
, et al
.
KLF2 maintains lineage fidelity and suppresses CD8 T cell exhaustion during acute LCMV infection
.
Science
.
2025
;
387
(
6735
):
eadn2337
.
41.
Carson
W
,
Lindemann
MJ
, et al;
Giri
.
Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor
.
J Exp Med
.
1994
;
180
(
4
):
1395
-
1403
.
42.
Cooley
S
,
He
F
,
Bachanova
V
, et al
.
First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia
.
Blood Adv
.
2019
;
3
(
13
):
1970
-
1980
.
43.
Mullard
A
.
First-in-class IL-15 receptor agonist nabs FDA approval for bladder cancer
.
Nat Rev Drug Discov
.
2024
;
23
(
6
):
410
.
44.
Levy
E
,
Reger
R
,
Segerberg
F
, et al
.
Enhanced bone marrow homing of natural killer cells following mRNA transfection with gain-of-function variant CXCR4R334X
.
Front Immunol
.
2019
;
10
:
1262
.
45.
Sanz-Ortega
L
,
Andersson
A
,
Carlsten
M
.
Harnessing upregulated E-selectin while enhancing SDF-1α sensing redirects infused NK cells to the AML-perturbed bone marrow
.
Leukemia
.
2024
;
38
(
3
):
579
-
589
.
46.
Grzywacz
B
,
Moench
L
,
McKenna
D
, et al
.
Natural killer cell homing and persistence in the bone marrow after adoptive immunotherapy correlates with better leukemia control
.
J Immunother
.
2019
;
42
(
2
):
65
-
72
.
You do not currently have access to this content.
Sign in via your Institution