• A score including IPSS-M risk score, sEPO levels, and TD predicts ESA response in patients with LR-MDS.

  • STAG2 mutations are associated with ESA resistance in male patients with LR-MDS.

Abstract

Acquired somatic mutations are incorporated in the classification and prognosis of myelodysplastic syndromes/neoplasms (MDSs). However, the predictive role of molecular features in MDS needs to be elucidated, especially in the lower-risk subtypes (LR-MDS), where treatment has become heterogeneous and predictive biomarkers are lacking. In this study, we investigated genetic markers associated with erythropoiesis-stimulating agents (ESAs) response in LR-MDS. A European cohort of 535 patients with LR-MDS was analyzed using targeted next-generation sequencing (t-NGS) to calculate molecular prognostic scores (International Prognostic Scoring System, molecular [IPSS-M]). The integration of IPSS-M score among the 2 known variables, serum erythropoietin (sEPO) and transfusion dependence (TD), refined the capability to predict response (area under the curve [AUC], 0.71 vs 0.63, P = .0004). Based on these 3 variables, a molecular predictive score, which we named ESA-PSS-M (–0.05 × [sEPO U/L] –4.5 × [IPSS-M score] –5 × [TD (yes = 1; no = 0)]; specificity 76%; sensitivity 57%), was generated and validated in an external cohort (n = 223 patients with LR-MDS). Despite the impact of IPSS-M score, no single mutated gene was linked to ESA response; however, when we stratified cases by sex at birth, the X-linked STAG2 gene mutations were significantly associated with ESA resistance in males with LR-MDS (odds ratio, 0.13; P = .003). To our knowledge, this is the first study based on a large multicenter cohort of patients suggesting that the integration of IPSS-M score and sex-specific mutations can characterize ESA resistance and guide first-line (1L) therapeutic choices for anemic LR-MDS (ie, ESAs vs luspatercept).

1.
Woll
PS
,
Kjällquist
U
,
Chowdhury
O
, et al
.
Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo
.
Cancer Cell
.
2014
;
25
(
6
):
794
-
808
.
2.
Santini
V
.
Anemia as the main manifestation of myelodysplastic syndromes
.
Semin Hematol
.
2015
;
52
(
4
):
348
-
356
.
3.
Greenberg
PL
,
Tuechler
H
,
Schanz
J
, et al
.
Revised international prognostic scoring system for myelodysplastic syndromes
.
Blood
.
2012
;
120
(
12
):
2454
-
2465
.
4.
Gascón
P
,
Krendyukov
A
,
Mathieson
N
,
Aapro
M
.
Epoetin alfa for the treatment of myelodysplastic syndrome-related anemia: a review of clinical data, clinical guidelines, and treatment protocols
.
Leuk Res
.
2019
;
81
:
35
-
42
.
5.
Platzbecker
U
,
Santini
V
,
Fenaux
P
, et al
.
Imetelstat in patients with lower-risk myelodysplastic syndromes who have relapsed or are refractory to erythropoiesis-stimulating agents (IMerge): a multinational, randomised, double-blind, placebo-controlled, phase 3 trial
.
The Lancet
.
2024
;
403
(
10423
):
249
-
260
.
6.
Fenaux
P
,
Platzbecker
U
,
Mufti
GJ
, et al
.
Luspatercept in patients with lower-risk myelodysplastic syndromes
.
N Engl J Med
.
2020
;
382
(
2
):
140
-
151
.
7.
Della Porta
M
,
Platzbecker
U
,
Santini
V
, et al
.
The Commands trial: a phase 3 study of the efficacy and safety of luspatercept versus epoetin alfa for the treatment of anemia due to IPSS-R very low-low-or intermediate-Risk MDS in erythropoiesis stimulating agent-naive patients who require RBC transfusions
.
Blood
.
2020
;
136
(
suppl 1
):
1
-
2
.
8.
Boccia
R
,
Xiao
H
,
von Wilamowitz-Moellendorff
C
, et al
.
A systematic literature review of predictors of erythropoiesis-stimulating agent failure in lower-risk myelodysplastic syndromes
.
J Clin Med
.
2024
;
13
(
9
):
2702
.
9.
Park
S
,
Grabar
S
,
Kelaidi
C
, et al
.
Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience
.
Blood
.
2008
;
111
(
2
):
574
-
582
.
10.
Khoury
JD
,
Solary
E
,
Abla
O
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1703
-
1719
.
11.
Arber
DA
,
Orazi
A
,
Hasserjian
RP
, et al
.
International Consensus Classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data
.
Blood
.
2022
;
140
(
11
):
1200
-
1228
.
12.
Bernard
E
,
Tuechler
H
,
Greenberg
PL
, et al
.
Molecular International Prognostic Scoring System for myelodysplastic syndromes
.
NEJM Evid
.
2022
;
1
(
7
):
EVIDoa2200008
.
13.
Kosmider
O
,
Passet
M
,
Santini
V
, et al
.
Are somatic mutations predictive of response to erythropoiesis stimulating agents in lower risk myelodysplastic syndromes?
.
Haematologica
.
2016
;
101
(
7
):
e280
-
e283
.
14.
Caballero
JC
,
Dávila
J
,
López-Pavía
M
, et al
.
Outcomes and effect of somatic mutations after erythropoiesis stimulating agents in patients with lower-risk myelodysplastic syndromes
.
Ther Adv Hematol
.
2024
;
15
:
20406207231218157
.
15.
Raddi
MG
,
Bencini
S
,
Peruzzi
B
, et al
.
Flow cytometric analysis of erythroid precursors and mutational signatures of lower risk myelodysplastic syndromes identify responders to erythroid stimulating agents
.
Blood Cancer J
.
2024
;
14
(
1
):
127
.
16.
Sauta
E
,
Robin
M
,
Bersanelli
M
, et al
.
Real-world validation of Molecular International Prognostic Scoring System for myelodysplastic syndromes
.
JCO
.
2023
;
41
(
15
):
2827
-
2842
.
17.
GenoMed4All consortium
.
A sex-informed approach to improve the personalised decision making process in myelodysplastic syndromes: a multicentre, observational cohort study
.
Lancet Haematol
.
2023
;
10
(
2
):
e117
-
e128
.
18.
Platzbecker
U
,
Fenaux
P
,
Adès
L
, et al
.
Proposals for revised IWG 2018 hematological response criteria in patients with MDS included in clinical trials
.
Blood
.
2019
;
133
(
10
):
1020
-
1030
.
19.
Choi
SM
,
Dewar
R
,
Burke
PW
,
Shao
L
.
Partial tandem duplication of KMT2A (MLL) may predict a subset of myelodysplastic syndrome with unique characteristics and poor outcome
.
Haematologica
.
2018
;
103
(
3
):
e131
-
e134
.
20.
Fenaux
P
,
Santini
V
,
Spiriti
MAA
, et al
.
A phase 3 randomized, placebo-controlled study assessing the efficacy and safety of epoetin-α in anemic patients with low-risk MDS
.
Leukemia
.
2018
;
32
(
12
):
2648
-
2658
.
21.
Park
S
,
Hamel
JF
,
Toma
A
, et al
.
Outcome of lower-risk patients with myelodysplastic syndromes without 5q deletion after failure of erythropoiesis-stimulating agents
.
J Clin Oncol
.
2017
;
35
(
14
):
1591
-
1597
.
22.
Park
S
,
Hamel
J-F
,
Toma
A
, et al
.
Outcome of lower-risk myelodysplastic syndrome with ring sideroblasts (MDS-RS) after failure of erythropoiesis-stimulating agents
.
Leuk Res
.
2020
;
99
:
106472
.
23.
Hellström-Lindberg
E
,
Negrin
R
,
Stein
R
, et al
.
Erythroid response to treatment with G-CSF plus erythropoietin for the anaemia of patients with myelodysplastic syndromes: proposal for a predictive model
.
Br J Haematol
.
1997
;
99
(
2
):
344
-
351
.
24.
Kim
JS
,
He
X
,
Orr
B
, et al
.
Intact cohesion, anaphase, and chromosome segregation in human cells harboring tumor-derived mutations in STAG2
.
PLoS Genet
.
2016
;
12
(
2
):
e1005865
.
25.
Solomon
DA
,
Kim
T
,
Diaz-Martinez
LA
, et al
.
Mutational inactivation of STAG2 causes aneuploidy in human cancer
.
Science
.
2011
;
333
(
6045
):
1039
-
1043
.
26.
Buckstein
R
,
Balleari
E
,
Wells
R
, et al
.
ITACA: A new validated international erythropoietic stimulating agent-response score that further refines the predictive power of previous scoring systems
.
Am J Hematol
.
2017
;
92
(
10
):
1037
-
1046
.
27.
Cuadrado
A
,
Losada
A
.
Specialized functions of cohesins STAG1 and STAG2 in 3D genome architecture
.
Curr Opin Genet Dev
.
2020
;
61
:
9
-
16
.
28.
Fischer
A
,
Hernández-Rodríguez
B
,
Mulet-Lazaro
R
, et al
.
STAG2 mutations reshape the cohesin-structured spatial chromatin architecture to drive gene regulation in acute myeloid leukemia
.
Cell Rep
.
2024
;
43
(
8
):
114498
.
29.
Sarchi
M
,
Clough
CA
,
Gallì
A
, et al
.
Distinct routes of clonal progression in SF3B1-mutant myelodysplastic syndromes
.
Blood Adv
.
2025
;
9
(
12
):
3044
-
3055
.
30.
Sudunagunta
VS
,
Chen
Y
,
Xu
JJ
, et al
.
Dysplastic erythropoiesis in Stag2 loss exhibits defective nuclear condensation and hemophagocytosis [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
698
-
699
.
31.
De Koninck
M
,
Lapi
E
,
Badía-Careaga
C
, et al
.
Essential roles of cohesin STAG2 in mouse embryonic development and adult tissue homeostasis
.
Cell Rep
.
2020
;
32
(
6
):
108014
.
You do not currently have access to this content.
Sign in via your Institution