• Patients with AL amyloidosis show changes in malignant plasma cell (PC) and enrichment in a newly defined, normal PC subset.

  • An inflammatory transcriptional signature characterizes the bone marrow microenvironment in AL amyloidosis.

Abstract

AL amyloidosis is a disorder characterized by expansion of clonal plasma cells in the bone marrow and distant end organ damage mediated by misfolded immunoglobulin free light chains. There are currently limited data regarding the functional characteristics of AL amyloidosis plasma cells and their surrounding bone marrow microenvironment. We performed 5’ single-cell RNA sequencing on newly diagnosed, treatment-naïve patients with AL amyloidosis and healthy subjects. We identified generalized suppression of normal bone marrow hematopoiesis with distinct expansion of monocytes and subsets of CD4+ T cells in patients with AL amyloidosis. We detected significant transcriptional changes broadly occurring among immune cells with increased tumor necrosis factor-α signaling and interferon response accompanied by increased inflammatory response in bone marrow plasma, as measured via quantitative proteomics with specific elevation of costimulatory molecule soluble CD276 (sB7-H3). A transcriptionally distinct population of nonmalignant plasma cells was disproportionately expanded in patients with AL amyloidosis and characterized by increased expression of CRIP1. Finally, clonal AL amyloidosis plasma cells were identified based on their unique variable-diversity-joining. rearrangement and showed increased expression of genes involved in proteostasis when compared with autologous, polyclonal plasma cells. Interpatient transcriptional heterogeneity was evident, with transcriptional states reflective of common genomic translocations easily identifiable. This study defines the transcriptional characteristics of AL amyloidosis plasma cells and their surrounding bone marrow microenvironment with identification of altered genes previously involved in the pathogenesis of other protein deposition disorders. Our data provide the rationale for functional validations of these genes in future studies.

1.
Merlini
G
,
Dispenzieri
A
,
Sanchorawala
V
, et al
.
Systemic immunoglobulin light chain amyloidosis
.
Nat Rev Dis Primers
.
2018
;
4
(
1
):
38
.
2.
Wechalekar
AD
,
Fontana
M
,
Quarta
CC
,
Liedtke
M
.
AL amyloidosis for cardiologists: awareness, diagnosis, and future prospects: JACC: cardiooncology state-of-the-art review
.
JACC CardioOncol
.
2022
;
4
(
4
):
427
-
441
.
3.
Richey
T
,
Foster
JS
,
Williams
AD
, et al
.
Macrophage-mediated phagocytosis and dissolution of amyloid-like fibrils in mice, monitored by optical imaging
.
Am J Pathol
.
2019
;
189
(
5
):
989
-
998
.
4.
Eisele
YS
,
Monteiro
C
,
Fearns
C
, et al
.
Targeting protein aggregation for the treatment of degenerative diseases
.
Nat Rev Drug Discov
.
2015
;
14
(
11
):
759
-
780
.
5.
Kastritis
E
,
Palladini
G
,
Minnema
MC
, et al
.
Daratumumab-based treatment for immunoglobulin light-chain amyloidosis
.
N Engl J Med
.
2021
;
385
(
1
):
46
-
58
.
6.
Bianchi
G
,
Kumar
S
.
Systemic amyloidosis due to clonal plasma cell diseases
.
Hematol Oncol Clin North Am
.
2020
;
34
(
6
):
1009
-
1026
.
7.
Bianchi
G
,
Zhang
Y
,
Comenzo
RL
.
AL amyloidosis: current chemotherapy and immune therapy treatment strategies: JACC: cardiooncology state-of-the-art review
.
JACC CardioOncol
.
2021
;
3
(
4
):
467
-
487
.
8.
Kyle
RA
,
Therneau
TM
,
Rajkumar
SV
, et al
.
A long-term study of prognosis in monoclonal gammopathy of undetermined significance
.
N Engl J Med
.
2002
;
346
(
8
):
564
-
569
.
9.
Bianchi
G
,
Munshi
NC
.
Pathogenesis beyond the cancer clone(s) in multiple myeloma
.
Blood
.
2015
;
125
(
20
):
3049
-
3058
.
10.
Comenzo
RL
,
Zhang
Y
,
Martinez
C
,
Osman
K
,
Herrera
GA
.
The tropism of organ involvement in primary systemic amyloidosis: contributions of Ig V(L) germ line gene use and clonal plasma cell burden
.
Blood
.
2001
;
98
(
3
):
714
-
720
.
11.
Radamaker
L
,
Karimi-Farsijani
S
,
Andreotti
G
, et al
.
Role of mutations and post-translational modifications in systemic AL amyloidosis studied by cryo-EM
.
Nat Commun
.
2021
;
12
(
1
):
6434
.
12.
Alameda
D
,
Goicoechea
I
,
Vicari
M
, et al
.
Tumor cells in light-chain amyloidosis and myeloma show distinct transcriptional rewiring of normal plasma cell development
.
Blood
.
2021
;
138
(
17
):
1583
-
1589
.
13.
Palumbo
A
,
Rajkumar
SV
,
San Miguel
JF
, et al
.
International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation
.
J Clin Oncol
.
2014
;
32
(
6
):
587
-
600
.
14.
Zavidij
O
,
Haradhvala
NJ
,
Mouhieddine
TH
, et al
.
Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma
.
Nat Cancer
.
2020
;
1
(
5
):
493
-
506
.
15.
Huang
Y
,
McCarthy
DJ
,
Stegle
O
.
Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference
.
Genome Biol
.
2019
;
20
(
1
):
273
.
16.
Hay
SB
,
Ferchen
K
,
Chetal
K
,
Grimes
HL
,
Salomonis
N
.
The Human Cell Atlas bone marrow single-cell interactive web portal
.
Exp Hematol
.
2018
;
68
:
51
-
61
.
17.
Pellin
D
,
Loperfido
M
,
Baricordi
C
, et al
.
A comprehensive single cell transcriptional landscape of human hematopoietic progenitors
.
Nat Commun
.
2019
;
10
(
1
):
2395
.
18.
Zeng
AGX
,
Iacobucci
I
,
Shah
S
, et al
.
Precise single-cell transcriptomic mapping of normal and leukemic cell states reveals unconventional lineage priming in acute myeloid leukemia
.
bioRxiv
.
Preprint posted online 27 December 2023
https://doi.org/10.1101/2023.12.26.573390.
19.
Kang
JB
,
Nathan
A
,
Weinand
K
, et al
.
Efficient and precise single-cell reference atlas mapping with Symphony
.
Nat Commun
.
2021
;
12
(
1
):
5890
.
20.
Pham
TV
,
Piersma
SR
,
Warmoes
M
,
Jimenez
CR
.
On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics
.
Bioinformatics
.
2010
;
26
(
3
):
363
-
369
.
21.
de Jong
MME
,
Kellermayer
Z
,
Papazian
N
, et al
.
The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape
.
Nat Immunol
.
2021
;
22
(
6
):
769
-
780
.
22.
Muzellec
B
,
Teleńczuk
M
,
Cabeli
V
,
Andreux
M
.
PyDESeq2: a python package for bulk RNA-seq differential expression analysis
.
Bioinformatics
.
2023
;
39
(
9
):
btad547
.
23.
Liberzon
A
,
Birger
C
,
Thorvaldsdóttir
H
,
Ghandi
M
,
Mesirov
JP
,
Tamayo
P
.
The Molecular Signatures Database (MSigDB) hallmark gene set collection
.
Cell Syst
.
2015
;
1
(
6
):
417
-
425
.
24.
Lux
A
,
Gottwald
J
,
Behrens
HM
,
Daniel
C
,
Amann
K
,
Röcken
C
.
Complement 9 in amyloid deposits
.
Amyloid
.
2021
;
28
(
3
):
199
-
208
.
25.
Kourelis
TV
,
Dasari
SS
,
Dispenzieri
A
, et al
.
A proteomic atlas of cardiac amyloid plaques
.
JACC CardioOncol
.
2020
;
2
(
4
):
632
-
643
.
26.
Charalampous
C
,
Dasari
S
,
McPhail
E
, et al
.
A proteomic atlas of kidney amyloidosis provides insights into disease pathogenesis
.
Kidney Int
.
2024
;
105
(
3
):
484
-
495
.
27.
Chapoval
AI
,
Ni
J
,
Lau
JS
, et al
.
B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production
.
Nat Immunol
.
2001
;
2
(
3
):
269
-
274
.
28.
Kontos
F
,
Michelakos
T
,
Kurokawa
T
, et al
.
B7-H3: an attractive target for antibody-based immunotherapy
.
Clin Cancer Res
.
2021
;
27
(
5
):
1227
-
1235
.
29.
Lin
L
,
Cao
L
,
Liu
Y
, et al
.
B7-H3 promotes multiple myeloma cell survival and proliferation by ROS-dependent activation of Src/STAT3 and c-Cbl-mediated degradation of SOCS3
.
Leukemia
.
2019
;
33
(
6
):
1475
-
1486
.
30.
Domínguez Conde
C
,
Xu
C
,
Jarvis
LB
, et al
.
Cross-tissue immune cell analysis reveals tissue-specific features in humans
.
Science
.
2022
;
376
(
6594
):
eabl5197
.
31.
Da Via
MC
,
Lazzaroni
F
,
Matera
A
, et al
.
Aberrant single-cell phenotype and clinical implications of genotypically defined polyclonal plasma cells in myeloma
.
Blood
.
2025
;
145
(
26
):
3124
-
3138
.
32.
Tang
P
,
Yu
Z
,
Sun
H
, et al
.
CRIP1 involves the pathogenesis of multiple myeloma via dual-regulation of proteasome and autophagy
.
EBioMedicine
.
2024
;
100
:
104961
.
33.
Boiarsky
R
,
Haradhvala
NJ
,
Alberge
JB
, et al
.
Single cell characterization of myeloma and its precursor conditions reveals transcriptional signatures of early tumorigenesis
.
Nat Commun
.
2022
;
13
(
1
):
7040
.
34.
Kandel
R
,
Jung
J
,
Neal
S
.
Proteotoxic stress and the ubiquitin proteasome system
.
Semin Cell Dev Biol
.
2024
;
156
:
107
-
120
.
35.
Oliva
L
,
Orfanelli
U
,
Resnati
M
, et al
.
The amyloidogenic light chain is a stressor that sensitizes plasma cells to proteasome inhibitor toxicity
.
Blood
.
2017
;
129
(
15
):
2132
-
2142
.
36.
Bianchi
G
,
Oliva
L
,
Cascio
P
, et al
.
The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition
.
Blood
.
2009
;
113
(
13
):
3040
-
3049
.
37.
Kourelis
TV
,
Dasari
S
,
Theis
JD
, et al
.
Clarifying immunoglobulin gene usage in systemic and localized immunoglobulin light-chain amyloidosis by mass spectrometry
.
Blood
.
2017
;
129
(
3
):
299
-
306
.
38.
Kimura
K
,
Tsukamoto
S
,
Miyazaki
K
, et al
.
Identification of clonal immunoglobulin lambda light-chain gene rearrangements in AL amyloidosis using next-generation sequencing
.
Exp Hematol
.
2021
;
101-102
:
34
-
41.e4
.
39.
Kumar
S
,
Murray
D
,
Dasari
S
, et al
.
Assay to rapidly screen for immunoglobulin light chain glycosylation: a potential path to earlier AL diagnosis for a subset of patients
.
Leukemia
.
2019
;
33
(
1
):
254
-
257
.
40.
Sturm
G
,
Szabo
T
,
Fotakis
G
, et al
.
Scirpy: a Scanpy extension for analyzing single-cell T-cell receptor-sequencing data
.
Bioinformatics
.
2020
;
36
(
18
):
4817
-
4818
.
41.
Gao
S
,
Wu
Z
,
Arnold
B
, et al
.
Single-cell RNA sequencing coupled to TCR profiling of large granular lymphocyte leukemia T cells
.
Nat Commun
.
2022
;
13
(
1
):
1982
.
42.
Koch
H
,
Starenki
D
,
Cooper
SJ
,
Myers
RM
,
Li
Q
.
powerTCR: a model-based approach to comparative analysis of the clone size distribution of the T cell receptor repertoire
.
PLoS Comput Biol
.
2018
;
14
(
11
):
e1006571
.
43.
Desponds
J
,
Mayer
A
,
Mora
T
,
Walczak
AM
. Population dynamics of immune repertoires.
Mathematical, Computational and Experimental T Cell Immunology
.
Springer
;
2021
:
203
-
221
.
44.
Ledergor
G
,
Weiner
A
,
Zada
M
, et al
.
Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma
.
Nat Med
.
2018
;
24
(
12
):
1867
-
1876
.
45.
Ullrich
S
,
Münch
A
,
Neumann
S
,
Kremmer
E
,
Tatzelt
J
,
Lichtenthaler
SF
.
The novel membrane protein TMEM59 modulates complex glycosylation, cell surface expression, and secretion of the amyloid precursor protein
.
J Biol Chem
.
2010
;
285
(
27
):
20664
-
20674
.
46.
Hoefner
C
,
Bryde
TH
,
Pihl
C
, et al
.
FK506-binding protein 2 participates in proinsulin folding
.
Biomolecules
.
2023
;
13
(
1
):
152
.
47.
Nafar
F
,
Williams
JB
,
Mearow
KM
.
Astrocytes release HspB1 in response to amyloid-beta exposure in vitro
.
J Alzheimers Dis
.
2016
;
49
(
1
):
251
-
263
.
48.
Wright
DE
,
Wagers
AJ
,
Gulati
AP
,
Johnson
FL
,
Weissman
IL
.
Physiological migration of hematopoietic stem and progenitor cells
.
Science
.
2001
;
294
(
5548
):
1933
-
1936
.
49.
Zhang
G
,
Hou
J
,
Shi
J
,
Yu
G
,
Lu
B
,
Zhang
X
.
Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum
.
Immunology
.
2008
;
123
(
4
):
538
-
546
.
50.
Billadeau
D
,
Van Ness
B
,
Kimlinger
T
, et al
.
Clonal circulating cells are common in plasma cell proliferative disorders: a comparison of monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and active myeloma
.
Blood
.
1996
;
88
(
1
):
289
-
296
.
51.
Bergsagel
PL
,
Smith
AM
,
Szczepek
A
,
Mant
MJ
,
Belch
AR
,
Pilarski
LM
.
In multiple myeloma, clonotypic B lymphocytes are detectable among CD19+ peripheral blood cells expressing CD38, CD56, and monotypic Ig light chain
.
Blood
.
1995
;
85
(
2
):
436
-
447
.
52.
Matsui
W
,
Huff
CA
,
Wang
Q
, et al
.
Characterization of clonogenic multiple myeloma cells
.
Blood
.
2004
;
103
(
6
):
2332
-
2336
.
You do not currently have access to this content.
Sign in via your Institution