• Surface pre-TCR α chain (pTα) is often expressed in cortical T-ALL and predicts LCK activation.

  • Pre-TCR and IL-7R are aberrantly coexpressed in cortical T-ALL, and their coinhibition elicits strong synergism.

Abstract

Refractory and/or relapsing T-cell acute lymphoblastic leukemia (T-ALL) remains a major therapeutic challenge. The pre–T-cell receptor (TCR) pathway has recently emerged as a therapeutic target via LCK inhibition in this context. However, there is a need for simple and quickly assessable biomarkers to predict sensitivity to LCK inhibitors. Moreover, targeting LCK alone by tyrosine kinase inhibitors, such as dasatinib, often results in transient clinical responses, emphasizing the need for efficient combination strategies. Here, we assessed pre-TCR α chain (pTα) surface expression by flow cytometry in a unique series of 50 adult T-ALL patient-derived xenografts (PDXs). We show that cases displaying a cortical phenotype often express high levels of surface pTα (pre-TCR+ T-ALL) and that the latter associates with LCK activation. Furthermore, we show that ectopic interleukin-7 receptor (IL-7R) expression can rescue pre-TCR+ T-ALL from dasatinib cytotoxicity (5 PDXs). We tested whether coinhibition of pre-TCR and IL-7R signaling pathways could be synergetic in pre-TCR+ IL-7R+ T-ALL (11 PDXs). Combination of JAK inhibitors, ruxolitinib or tofacitinib, with dasatinib elicited strong and specific synergy in IL-7R+ pre-TCR+ T-ALL in vitro, including in the relapse setting (4 of 28 patient-derived primary samples). Using 3 adult-PDX models, we show that in vivo treatment with this combination significantly delayed leukemic progression and prolonged survival compared with either monotherapy. This preclinical study thus proposes the use of pTα as a biomarker of LCK-inhibitor sensitivity in T-ALL, and suggests that dual targeting of IL-7R and pre-TCR signaling pathways may be a relevant therapeutic strategy in a substantial proportion of adult T-ALL.

1.
Pölönen
P
,
Di Giacomo
D
,
Seffernick
AE
, et al
.
The genomic basis of childhood T-lineage acute lymphoblastic leukaemia
.
Nature
.
2024
;
632
(
8027
):
1082
-
1091
.
2.
Litzow
MR
,
Ferrando
AA
.
How I treat T-cell acute lymphoblastic leukemia in adults
.
Blood
.
2015
;
126
(
7
):
833
-
841
.
3.
Desjonquères
A
,
Chevallier
P
,
Thomas
X
, et al
.
Acute lymphoblastic leukemia relapsing after first-line pediatric-inspired therapy: a retrospective GRAALL study
.
Blood Cancer J
.
2016
;
6
(
12
):
e504
.
4.
Trinquand
A
,
Dos Santos
NR
,
Tran Quang
C
, et al
.
Triggering the TCR developmental checkpoint activates a therapeutically targetable tumor suppressive pathway in T-cell leukemia
.
Cancer Discov
.
2016
;
6
(
9
):
972
-
985
.
5.
Dik
WA
,
Pike-Overzet
K
,
Weerkamp
F
, et al
.
New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling
.
J Exp Med
.
2005
;
201
(
11
):
1715
-
1723
.
6.
Dutta
A
,
Zhao
B
,
Love
PE
.
New insights into TCR β-selection
.
Trends Immunol
.
2021
;
42
(
8
):
735
-
750
.
7.
Laukkanen
S
,
Grönroos
T
,
Pölönen
P
, et al
.
In silico and preclinical drug screening identifies dasatinib as a targeted therapy for T-ALL
.
Blood Cancer J
.
2017
;
7
(
9
):
e604
.
8.
Frismantas
V
,
Dobay
MP
,
Rinaldi
A
, et al
.
Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia
.
Blood
.
2017
;
129
(
11
):
e26
-
e37
.
9.
Gocho
Y
,
Liu
J
,
Hu
J
, et al
.
Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia
.
Nat Cancer
.
2021
;
2
(
3
):
284
-
299
.
10.
Hu
J
,
Jarusiewicz
J
,
Du
G
, et al
.
Preclinical evaluation of proteolytic targeting of LCK as a therapeutic approach in T cell acute lymphoblastic leukemia
.
Sci Transl Med
.
2022
;
14
(
659
):
eabo5228
.
11.
Serafin
V
,
Capuzzo
G
,
Milani
G
, et al
.
Glucocorticoid resistance is reverted by LCK inhibition in pediatric T-cell acute lymphoblastic leukemia
.
Blood
.
2017
;
130
(
25
):
2750
-
2761
.
12.
Saygin
C
,
Giordano
G
,
Shimamoto
K
, et al
.
Dual targeting of apoptotic and signaling pathways in T-lineage acute lymphoblastic leukemia
.
Clin Cancer Res
.
2023
;
29
(
16
):
3151
-
3161
.
13.
Laukkanen
S
,
Veloso
A
,
Yan
C
, et al
.
Therapeutic targeting of LCK tyrosine kinase and mTOR signaling in T-cell acute lymphoblastic leukemia
.
Blood
.
2022
;
140
(
17
):
1891
-
1906
.
14.
Cordo’
V
,
Meijer
MT
,
Hagelaar
R
, et al
.
Phosphoproteomic profiling of T cell acute lymphoblastic leukemia reveals targetable kinases and combination treatment strategies
.
Nat Commun
.
2022
;
13
(
1
):
1048
.
15.
Asnafi
V
,
Beldjord
K
,
Boulanger
E
, et al
.
Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment
.
Blood
.
2003
;
101
(
7
):
2693
-
2703
.
16.
Trinquand
A
,
Tanguy-Schmidt
A
,
Ben Abdelali
R
, et al
.
Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study
.
J Clin Oncol
.
2013
;
31
(
34
):
4333
-
4342
.
17.
Bond
J
,
Marchand
T
,
Touzart
A
, et al
.
An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study
.
Haematologica
.
2016
;
101
(
6
):
732
-
740
.
18.
Courtois
L
,
Cabannes-Hamy
A
,
Kim
R
, et al
.
IL-7 receptor expression is frequent in T-cell acute lymphoblastic leukemia and predicts sensitivity to JAK inhibition
.
Blood
.
2023
;
142
(
2
):
158
-
171
.
19.
Andrieu
GP
,
Kohn
M
,
Simonin
M
, et al
.
PRC2 loss of function confers a targetable vulnerability to BET proteins in T-ALL
.
Blood
.
2021
;
138
(
19
):
1855
-
1869
.
20.
Roels
J
,
Kuchmiy
A
,
De Decker
M
, et al
.
Distinct and temporary-restricted epigenetic mechanisms regulate human αβ and γδ T cell development
.
Nat Immunol
.
2020
;
21
(
10
):
1280
-
1292
.
21.
Park
J-E
,
Botting
RA
,
Domínguez Conde
C
, et al
.
A cell atlas of human thymic development defines T cell repertoire formation
.
Science
.
2020
;
367
(
6480
):
eaay3224
.
22.
López-Rodríguez
C
,
Aramburu
J
,
Berga-Bolaños
R
.
Transcription factors and target genes of pre-TCR signaling
.
Cell Mol Life Sci
.
2015
;
72
(
12
):
2305
-
2321
.
23.
Van De Wiele
CJ
,
Marino
JH
,
Murray
BW
,
Vo
SS
,
Whetsell
ME
,
Teague
TK
.
Thymocytes between the beta-selection and positive selection checkpoints are nonresponsive to IL-7 as assessed by STAT-5 phosphorylation
.
J Immunol
.
2004
;
172
(
7
):
4235
-
4244
.
24.
Marino
JH
,
Tan
C
,
Taylor
AA
, et al
.
Differential IL-7 responses in developing human thymocytes
.
Hum Immunol
.
2010
;
71
(
4
):
329
-
333
.
25.
Reizis
B
,
Leder
P
.
Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway
.
Genes Dev
.
2002
;
16
(
3
):
295
-
300
.
26.
González-García
S
,
García-Peydró
M
,
Martín-Gayo
E
, et al
.
CSL–MAML-dependent Notch1 signaling controls T lineage–specific IL-7Rα gene expression in early human thymopoiesis and leukemia
.
J Exp Med
.
2009
;
206
(
4
):
779
-
791
.
27.
Cabannes-Hamy
A
,
Courtois
L
,
Balsat
M
, et al
.
Oncogenetic-driven targeted therapy for relapsed/refractory T-cell acute lymphoblastic leukemia: a French ALL-target observatory report [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
518
.
28.
Campese
AF
,
Garbe
AI
,
Zhang
F
,
Grassi
F
,
Screpanti
I
,
von Boehmer
H
.
Notch1-dependent lymphomagenesis is assisted by but does not essentially require pre-TCR signaling
.
Blood
.
2006
;
108
(
1
):
305
-
310
.
29.
Trigueros
C
,
Ramiro
AR
,
Carrasco
YR
,
de Yebenes
VG
,
Albar
JP
,
Toribio
ML
.
Identification of a late stage of small noncycling pTα− pre-T Cells as immediate precursors of T cell receptor α/β+ thymocytes
.
J Exp Med
.
1998
;
188
(
8
):
1401
-
1412
.
30.
Allman
D
,
Karnell
FG
,
Punt
JA
, et al
.
Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells
.
J Exp Med
.
2001
;
194
(
1
):
99
-
106
.
31.
Panigada
M
,
Porcellini
S
,
Barbier
E
, et al
.
Constitutive endocytosis and degradation of the pre-T cell receptor
.
J Exp Med
.
2002
;
195
(
12
):
1585
-
1597
.
32.
Barata
JT
,
Durum
SK
,
Seddon
B
.
Flip the coin: IL-7 and IL-7R in health and disease
.
Nat Immunol
.
2019
;
20
(
12
):
1584
-
1593
.
33.
González-García
S
,
Mosquera
M
,
Fuentes
P
, et al
.
IL-7R is essential for leukemia-initiating cell activity of T-cell acute lymphoblastic leukemia
.
Blood
.
2019
;
134
(
24
):
2171
-
2182
.
34.
Milani
G
,
Matthijssens
F
,
Van Loocke
W
, et al
.
Genetic characterization and therapeutic targeting of MYC rearranged T-cell acute lymphoblastic leukemia
.
Br J Haematol
.
2019
;
185
(
1
):
169
-
174
.
You do not currently have access to this content.
Sign in via your Institution