• This study identified location-specific changes in the microbiome and associated gut metabolites in murine GVHD.

  • This study identified phenyllactate as a novel regulator of GI GVHD.

Abstract

Microbial dysbiosis and metabolite changes in the gastrointestinal (GI) tract have been linked to pathogenesis and severity of many diseases, including graft-versus-host disease (GVHD), the major complication of allogeneic hematopoietic stem cell transplantation. However, published studies have only considered the microbiome and metabolome of excreted stool and do not provide insight into the variability of the microbial community and metabolite composition throughout the GI tract or the unique temporal dynamics associated with different gut locations. Because such geographical variations are known to influence disease processes, we used a multi-omics approach to characterize the microbiome and metabolite profiles of gut contents from different intestinal regions in well-characterized mouse models of GVHD. Our analysis validated analyses from excreted stool, but importantly, uncovered new biological insights from the microbial and metabolite changes between syngeneic and allogeneic hosts that varied by GI location and time after transplantation. Our integrated analysis confirmed the involvement of known metabolic pathways, including short-chain fatty acid synthesis and bile acid metabolism, and identified additional functional genes, pathways, and metabolites, such as amino acids, fatty acids, and sphingolipids, linked to GI GVHD. Finally, we validated a biological relevance for one such newly identified microbial metabolite, phenyl lactate, that heretofore had not been linked to GI GVHD. Thus, our analysis of the geographic variability in the intestinal microbiome and metabolome offers new insights into GI GVHD pathogenesis and potential for novel therapeutics.

1.
Byndloss
MX
,
Pernitzsch
SR
,
Bäumler
AJ
.
Healthy hosts rule within: ecological forces shaping the gut microbiota
.
Mucosal Immunol
.
2018
;
11
(
5
):
1299
-
1305
.
2.
Tilg
H
,
Zmora
N
,
Adolph
TE
,
Elinav
E
.
The intestinal microbiota fuelling metabolic inflammation
.
Nat Rev Immunol
.
2020
;
20
(
1
):
40
-
54
.
3.
Köhler
N
,
Zeiser
R
.
Intestinal microbiota influence immune tolerance post allogeneic hematopoietic cell transplantation and intestinal GVHD
.
Front Immunol
.
2018
;
9
:
3179
.
4.
Rafei
H
,
Jenq
RR
.
Microbiome-intestine cross talk during acute graft-versus-host disease
.
Blood
.
2020
;
136
(
4
):
401
-
409
.
5.
Mathewson
ND
,
Jenq
R
,
Mathew
AV
, et al
.
Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease
.
Nat Immunol
.
2016
;
17
(
5
):
505
-
513
.
6.
Yue
X
,
Zhou
H
,
Wang
S
,
Chen
X
,
Xiao
H
.
Gut microbiota, microbiota-derived metabolites, and graft-versus-host disease
.
Cancer Med
.
2024
;
13
(
3
):
e6799
.
7.
Ferrara
JLM
,
Smith
CM
,
Sheets
J
,
Reddy
P
,
Serody
JS
.
Altered homeostatic regulation of innate and adaptive immunity in lower gastrointestinal tract GVHD pathogenesis
.
J Clin Invest
.
2017
;
127
(
7
):
2441
-
2451
.
8.
Jenq
RR
,
Ubeda
C
,
Taur
Y
, et al
.
Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation
.
J Exp Med
.
2012
;
209
(
5
):
903
-
911
.
9.
Haring
E
,
Uhl
FM
,
Andrieux
G
, et al
.
Bile acids regulate intestinal antigen presentation and reduce graft-versus-host disease without impairing the graft-versus-leukemia effect
.
Haematologica
.
2021
;
106
(
8
):
2131
-
2146
.
10.
Lindner
S
,
Miltiadous
O
,
Ramos
RJF
, et al
.
Altered microbial bile acid metabolism exacerbates T cell-driven inflammation during graft-versus-host disease
.
Nat Microbiol
.
2024
;
9
(
3
):
614
-
630
.
11.
Michonneau
D
,
Latis
E
,
Curis
E
, et al
.
Metabolomics analysis of human acute graft-versus-host disease reveals changes in host and microbiota-derived metabolites
.
Nat Commun
.
2019
;
10
(
1
):
5695
.
12.
Riwes
MM
,
Golob
JL
,
Magenau
J
, et al
.
Feasibility of a dietary intervention to modify gut microbial metabolism in patients with hematopoietic stem cell transplantation
.
Nat Med
.
2023
;
29
(
11
):
2805
-
2813
.
13.
Fredricks
DN
.
The gut microbiota and graft-versus-host disease
.
J Clin Invest
.
2019
;
129
(
5
):
1808
-
1817
.
14.
Jin
M
,
Shang
F
,
Wu
J
, et al
.
Tumor-associated microbiota in proximal and distal colorectal cancer and their relationships with clinical outcomes
.
Front Microbiol
.
2021
;
12
:
727937
.
15.
McCallum
G
,
Tropini
C
.
The gut microbiota and its biogeography
.
Nat Rev Microbiol
.
2024
;
22
(
2
):
105
-
118
.
16.
Li
J
,
Zhu
Y
,
Yang
L
,
Wang
Z
.
Effect of gut microbiota in the colorectal cancer and potential target therapy
.
Discov Oncol
.
2022
;
13
(
1
):
51
.
17.
Ruan
W
,
Engevik
MA
,
Spinler
JK
,
Versalovic
J
.
Healthy human gastrointestinal microbiome: composition and function after a decade of exploration
.
Dig Dis Sci
.
2020
;
65
(
3
):
695
-
705
.
18.
Reddy
P
,
Maeda
Y
,
Liu
C
,
Krijanovski
OI
,
Korngold
R
,
Ferrara
JLM
.
A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses
.
Nat Med
.
2005
;
11
(
11
):
1244
-
1249
.
19.
Sato
T
,
Vries
RG
,
Snippert
HJ
, et al
.
Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
.
Nature
.
2009
;
459
(
7244
):
262
-
265
.
20.
Yilmaz
OH
,
Katajisto
P
,
Lamming
DW
, et al
.
mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake
.
Nature
.
2012
;
486
(
7404
):
490
-
495
.
21.
Watson
AR
,
Füssel
J
,
Veseli
I
, et al
.
Metabolic independence drives gut microbial colonization and resilience in health and disease
.
Genome Biol
.
2023
;
24
(
1
):
78
.
22.
Deutscher
J
,
Francke
C
,
Postma
PW
.
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria
.
Microbiol Mol Biol Rev
.
2006
;
70
(
4
):
939
-
1031
.
23.
Takashima
S
,
Martin
ML
,
Jansen
SA
, et al
.
T cell-derived interferon-γ programs stem cell death in immune-mediated intestinal damage
.
Sci Immunol
.
2019
;
4
(
42
):
eaay8556
.
24.
Reddy
P
,
Zhao
D
,
Ravikumar
V
, et al
.
Inflammatory memory restrains intestinal stem cell regeneration
.
Res Sq
.
Preprint posted online 7 March 2023
.
25.
Thiele Orberg
E
,
Meedt
E
,
Hiergeist
A
, et al
.
Bacteria and bacteriophage consortia are associated with protective intestinal metabolites in patients receiving stem cell transplantation
.
Nat Cancer
.
2024
;
5
(
1
):
187
-
208
.
26.
Vallet
N
,
Salmona
M
,
Malet-Villemagne
J
, et al
.
Circulating T cell profiles associate with enterotype signatures underlying hematological malignancy relapses
.
Cell Host Microbe
.
2023
;
31
(
8
):
1386
-
1403.e6
.
27.
Human Metabolome Database
.
Showing metabocard for 2-acetylpyrrolidine (HMDB0037293)
. Accessed 2 May 2024. https://hmdb.ca/metabolites/HMDB0037293.
28.
Kumari
R
,
Palaniyandi
S
,
Hildebrandt
GC
.
Metabolic reprogramming—a new era how to prevent and treat graft versus host disease after allogeneic hematopoietic stem cell transplantation has begun
.
Front Pharmacol
.
2020
;
11
:
588449
.
29.
Liu
Y
,
Huang
A
,
Chen
Q
, et al
.
A distinct glycerophospholipid metabolism signature of acute graft versus host disease with predictive value
.
JCI Insight
.
2019
;
5
(
16
):
e129494
.
30.
Li
X
,
Abdel-Moneim
AME
,
Mesalam
NM
,
Yang
B
.
Effects of lysophosphatidylcholine on jejuna morphology and its potential mechanism
.
Front Vet Sci
.
2022
;
9
:
911496
.
31.
King
S
,
Campbell
J
,
Rowe
R
,
Daly
M
,
Moncrieff
G
,
Maybury
C
.
A systematic review to evaluate the efficacy of azelaic acid in the management of acne, rosacea, melasma and skin aging
.
J Cosmet Dermatol
.
2023
;
22
(
10
):
2650
-
2662
.
32.
Layton
AM
,
Dias da Rocha
MA
.
Real-world case studies showing the effective use of azelaic acid in the treatment, and during the maintenance phase, of adult female acne patients
.
Clin Cosmet Invest Dermatol
.
2023
;
16
:
515
-
527
.
33.
Liao
Y
,
Wu
X
,
Luo
W
, et al
.
Azelaic acid regulates the renin–angiotensin system and improves colitis based on network pharmacology and experimentation
.
ACS Omega
.
2023
;
8
(
17
):
15217
-
15228
.
34.
Ellermann
M
,
Arthur
JC
.
Siderophore-mediated iron acquisition and modulation of host-bacterial interactions
.
Free Radic Biol Med
.
2017
;
105
:
68
-
78
.
35.
Seike
K
,
Kiledal
A
,
Fujiwara
H
, et al
.
Ambient oxygen levels regulate intestinal dysbiosis and GVHD severity after allogeneic stem cell transplantation
.
Immunity
.
2023
;
56
(
2
):
353
-
368.e6
.
36.
Cullender
TC
,
Chassaing
B
,
Janzon
A
, et al
.
Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut
.
Cell Host Microbe
.
2013
;
14
(
5
):
571
-
581
.
37.
Phenyllactic acid: a potential antimicrobial compound in lactic acid bacteria. MedCrave online
. Accessed 7 April 2023. https://medcraveonline.com/JBMOA/phenyllactic-acid-apotential-aantimicrobial-compound-in-lactic-acid-bacteria.html#ref7.
38.
Rajanikar
RV
,
Nataraj
BH
,
Naithani
H
,
Ali
SA
,
Panjagari
NR
,
Behare
PV
.
Phenyllactic acid: a green compound for food biopreservation
.
Food Control
.
2021
;
128
:
108184
.
You do not currently have access to this content.
Sign in via your Institution