• T-PLL and other T-cell lymphomas are sensitive to drugs that target autophagy, nuclear export, and IAPs.

  • IAP inhibition induces an upregulation of the NF-κB pathway in T-PLL, with subsequent cell death being primarily necroptotic.

Abstract

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex vivo. After screening >2800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, than other blood cancers. Furthermore, we discovered previously unreported vulnerabilities of T-PLL. T-PLL cells exhibited a particular sensitivity to drugs targeting autophagy (thapsigargin and bafilomycin A1), nuclear export (selinexor), and inhibitor of apoptosis proteins (IAPs; birinapant), sensitivities that were also shared by other T-cell malignancies. Through bulk and single-cell RNA sequencing, we found these compounds to activate the Toll-like receptor (bafilomycin A1), p53 (selinexor), and tumor necrosis factor α (TNF-α)/NF-κB signaling pathways (birinapant) in T-PLL cells. Focusing on birinapant for its potential in drug repurposing, we uncovered that IAP inhibitor–induced cell death was primarily necroptotic and dependent on TNF-α. Through spectral flow cytometry, we confirmed the absence of cleaved caspase-3 in IAP inhibitor–treated T-PLL cells and show that IAP inhibition reduces the proliferation of T-PLL cells stimulated ex vivo, while showing only a limited effect on nonmalignant T-cells. In summary, our study maps the drug sensitivity of T-PLL across a broad range of targets and identifies new therapeutic approaches for T-PLL by targeting IAPs, exportin 1, and autophagy, highlighting potential candidates for drug repurposing and novel treatment strategies.

1.
Staber
PB
,
Herling
M
,
Bellido
M
, et al
.
Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia
.
Blood
.
2019
;
134
(
14
):
1132
-
1143
.
2.
Cross
MJ
,
Else
M
,
Morilla
R
, et al
.
No improvement in survival for T-PLL patients over the last two decades [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
1552
.
3.
Andersson
EI
,
Pützer
S
,
Yadav
B
, et al
.
Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling
.
Leukemia
.
2018
;
32
(
3
):
774
-
787
.
4.
Herbaux
C
,
Kornauth
C
,
Poulain
S
, et al
.
BH3 profiling identifies ruxolitinib as a promising partner for venetoclax to treat T-cell prolymphocytic leukemia
.
Blood
.
2021
;
137
(
25
):
3495
-
3506
.
5.
Dietrich
S
,
Oleś
M
,
Lu
J
, et al
.
Drug-perturbation-based stratification of blood cancer
.
J Clin Invest
.
2018
;
128
(
1
):
427
-
445
.
6.
Boidol
B
,
Kornauth
C
,
van der Kouwe
E
, et al
.
First-in-human response of BCL-2 inhibitor venetoclax in T-cell prolymphocytic leukemia
.
Blood
.
2017
;
130
(
23
):
2499
-
2503
.
7.
Schrader
A
,
Crispatzu
G
,
Oberbeck
S
, et al
.
Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL
.
Nat Commun
.
2018
;
9
(
1
):
697
.
8.
Hampel
PJ
,
Parikh
SA
,
Call
TG
, et al
.
Venetoclax treatment of patients with relapsed T-cell prolymphocytic leukemia
.
Blood Cancer J
.
2021
;
11
(
3
):
47
.
9.
von Jan
J
,
Timonen
S
,
Braun
T
, et al
.
Optimizing drug combinations for T-PLL: restoring DNA damage and P53-mediated apoptotic responses
.
Blood
.
2024
;
144
(
15
):
1595
-
1610
.
10.
Jethwa
A
,
Hüllein
J
,
Stolz
T
, et al
.
Targeted resequencing for analysis of clonal composition of recurrent gene mutations in chronic lymphocytic leukaemia
.
Br J Haematol
.
2013
;
163
(
4
):
496
-
500
.
11.
Meier-Abt
F
,
Lu
J
,
Cannizzaro
E
, et al
.
The protein landscape of chronic lymphocytic leukemia
.
Blood
.
2021
;
138
(
24
):
2514
-
2525
.
12.
Lukas
M
,
Velten
B
,
Sellner
L
, et al
.
Survey of ex vivo drug combination effects in chronic lymphocytic leukemia reveals synergistic drug effects and genetic dependencies
.
Leukemia
.
2020
;
34
(
11
):
2934
-
2950
.
13.
Wei
J
,
Stebbins
JL
,
Kitada
S
, et al
.
BI-97C1, an optically pure apogossypol derivative as pan-active inhibitor of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins
.
J Med Chem
.
2010
;
53
(
10
):
4166
-
4176
.
14.
Souers
AJ
,
Leverson
JD
,
Boghaert
ER
, et al
.
ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets
.
Nat Med
.
2013
;
19
(
2
):
202
-
208
.
15.
Tse
C
,
Shoemaker
AR
,
Adickes
J
, et al
.
ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor
.
Cancer Res
.
2008
;
68
(
9
):
3421
-
3428
.
16.
Nguyen
M
,
Marcellus
RC
,
Roulston
A
, et al
.
Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
49
):
19512
-
19517
.
17.
Mohammad
RM
,
Goustin
AS
,
Aboukameel
A
, et al
.
Preclinical studies of TW-37, a new nonpeptidic small-molecule inhibitor of Bcl-2, in diffuse large cell lymphoma xenograft model reveal drug action on both Bcl-2 and Mcl-1
.
Clin Cancer Res
.
2007
;
13
(
7
):
2226
-
2235
.
18.
Horwitz
SM
,
Koch
R
,
Porcu
P
, et al
.
Activity of the PI3K-δ,γ inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma
.
Blood
.
2018
;
131
(
8
):
888
-
898
.
19.
Moskowitz
AJ
,
Ghione
P
,
Jacobsen
E
, et al
.
A phase 2 biomarker-driven study of ruxolitinib demonstrates effectiveness of JAK/STAT targeting in T-cell lymphomas
.
Blood
.
2021
;
138
(
26
):
2828
-
2837
.
20.
Dearden
C
.
How I treat prolymphocytic leukemia
.
Blood
.
2012
;
120
(
3
):
538
-
551
.
21.
Kucab
JE
,
Hollstein
M
,
Arlt
VM
,
Phillips
DH
.
Nutlin-3a selects for cells harbouring TP53 mutations
.
Int J Cancer
.
2017
;
140
(
4
):
877
-
887
.
22.
Mitsuuchi
Y
,
Benetatos
CA
,
Deng
Y
, et al
.
Bivalent IAP antagonists, but not monovalent IAP antagonists, inhibit TNF-mediated NF-κB signaling by degrading TRAF2-associated cIAP1 in cancer cells
.
Cell Death Discov
.
2017
;
3
(
1
):
16046
.
23.
Fischer
M
.
Census and evaluation of p53 target genes
.
Oncogene
.
2017
;
36
(
28
):
3943
-
3956
.
24.
Kanehisa
M
,
Goto
S
.
KEGG: Kyoto encyclopedia of genes and genomes
.
Nucleic Acids Res
.
2000
;
28
(
1
):
27
-
30
.
25.
Kanehisa
M
,
Furumichi
M
,
Sato
Y
,
Kawashima
M
,
Ishiguro-Watanabe
M
.
KEGG for taxonomy-based analysis of pathways and genomes
.
Nucleic Acids Res
.
2023
;
51
(
D1
):
D587
-
D592
.
26.
Gilmore, T
.
NF-kappaB transcription factors
. Accessed 30 April 2023. https://www.bu.edu/nf-kb/gene-resources/target-genes/.
27.
Kanehisa
M
.
Toward understanding the origin and evolution of cellular organisms
.
Protein Sci
.
2019
;
28
(
11
):
1947
-
1951
.
28.
Yu
S
,
Green
J
,
Wellens
R
,
Lopez-Castejon
G
,
Brough
D
.
Bafilomycin A1 enhances NLRP3 inflammasome activation in human monocytes independent of lysosomal acidification
.
FEBS J
.
2021
;
288
(
10
):
3186
-
3196
.
29.
Bertrand
MJM
,
Milutinovic
S
,
Dickson
KM
, et al
.
cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination
.
Mol Cell
.
2008
;
30
(
6
):
689
-
700
.
30.
Geserick
P
,
Hupe
M
,
Moulin
M
, et al
.
Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment
.
J Cell Biol
.
2009
;
187
(
7
):
1037
-
1054
.
31.
Feoktistova
M
,
Geserick
P
,
Kellert
B
, et al
.
cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms
.
Mol Cell
.
2011
;
43
(
3
):
449
-
463
.
32.
Tenev
T
,
Bianchi
K
,
Darding
M
, et al
.
The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs
.
Mol Cell
.
2011
;
43
(
3
):
432
-
448
.
33.
Lawlor
KE
,
Feltham
R
,
Yabal
M
, et al
.
XIAP loss triggers RIPK3- and caspase-8-driven IL-1β activation and cell death as a consequence of TLR-MyD88-induced cIAP1-TRAF2 degradation
.
Cell Rep
.
2017
;
20
(
3
):
668
-
682
.
34.
Condon
SM
,
Mitsuuchi
Y
,
Deng
Y
, et al
.
Birinapant, a smac-mimetic with improved tolerability for the treatment of solid tumors and hematological malignancies
.
J Med Chem
.
2014
;
57
(
9
):
3666
-
3677
.
35.
Noonan
AM
,
Bunch
KP
,
Chen
J-Q
, et al
.
Pharmacodynamic markers and clinical results from the phase 2 study of the SMAC mimetic birinapant in women with relapsed platinum-resistant or -refractory epithelial ovarian cancer
.
Cancer
.
2016
;
122
(
4
):
588
-
597
.
36.
Dietrich
S
,
Glimm
H
,
Andrulis
M
,
von Kalle
C
,
Ho
AD
,
Zenz
T
.
BRAF inhibition in refractory hairy-cell leukemia
.
N Engl J Med
.
2012
;
366
(
21
):
2038
-
2040
.
37.
McComb
S
,
Aguadé-Gorgorió
J
,
Harder
L
, et al
.
Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL
.
Sci Transl Med
.
2016
;
8
(
339
):
339ra70
.
38.
Murphy
JM
,
Czabotar
PE
,
Hildebrand
JM
, et al
.
The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism
.
Immunity
.
2013
;
39
(
3
):
443
-
453
.
39.
Wang
L
,
Du
F
,
Wang
X
.
TNF-α induces two distinct caspase-8 activation pathways
.
Cell
.
2008
;
133
(
4
):
693
-
703
.
40.
Varfolomeev
E
,
Blankenship
JW
,
Wayson
SM
, et al
.
IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis
.
Cell
.
2007
;
131
(
4
):
669
-
681
.
41.
Vince
JE
,
Wong
WW-L
,
Khan
N
, et al
.
IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis
.
Cell
.
2007
;
131
(
4
):
682
-
693
.
42.
Oberst
A
,
Dillon
CP
,
Weinlich
R
, et al
.
Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis
.
Nature
.
2011
;
471
(
7338
):
363
-
367
.
43.
Laukens
B
,
Jennewein
C
,
Schenk
B
, et al
.
Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor α-induced necroptosis
.
Neoplasia
.
2011
;
13
(
10
):
971
-
979
.
44.
Burton
A
,
Ligman
B
,
Kearney
C
,
Murray
SE
.
Clinically relevant SMAC mimetics do not enhance human T cell proliferation or cytokine production
.
bioRxiv
.
Preprint posted online 11 November 2021
.
45.
Dufva
O
,
Koski
J
,
Maliniemi
P
, et al
.
Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity
.
Blood
.
2020
;
135
(
9
):
597
-
609
.
46.
Chari
A
,
Vogl
DT
,
Gavriatopoulou
M
, et al
.
Oral selinexor–dexamethasone for triple-class refractory multiple myeloma
.
N Engl J Med
.
2019
;
381
(
8
):
727
-
738
.
You do not currently have access to this content.
Sign in via your Institution