• HNRNPC, an essential RNA-binding protein and m6A reader, coordinates oncogenic transcription and cell metabolism in T-ALL.

  • Patients with T-ALL present elevated FTO levels and global m6A changes, and FTO targeting enhances efficacy of existing treatment options.

Abstract

RNA homeostasis is dysregulated in cancer and affects disease progression and therapy resistance. N6-methyladenosine (m6A), the most abundant epitranscriptomic modification in eukaryotic messenger RNA, plays a pivotal role in RNA biology, affecting transcript stability, translation, and splicing. Our study uncovers the extensive m6A changes in patients with T-cell acute lymphoblastic leukemia (T-ALL), to our knowledge, for the first time. It reveals m6A’s regulatory role in the oncogenic MYC and cholesterol biosynthesis pathways. In addition, we discovered that T-ALL is highly dependent on the m6A reader heterogeneous nuclear ribonucleoprotein C (HNRNPC). HNRNPC is transcriptionally controlled by MYC and is an essential regulator of m6A-modified transcripts. Consequently, transcriptional silencing of HNRNPC profoundly impairs oncogenic pathways and critically diminishes leukemia cell growth. In addition, the levels of the m6A demethylase fat mass and obesity-associated protein (FTO) are significantly elevated in T-ALL cells compared with normal cells, and to other types of leukemia. Targeting FTO shows therapeutic potential in preclinical disease models and synergizes with clinically relevant therapeutics. Our findings underscore the integral role of RNA methylation in orchestrating cancer cell oncogene expression and metabolism and highlight promising novel therapeutic avenues for the treatment of T-cell leukemia.

1.
Trimarchi
T
,
Bilal
E
,
Ntziachristos
P
, et al
.
Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia
.
Cell
.
2014
;
158
(
3
):
593
-
606
.
2.
Ntziachristos
P
,
Lim
JS
,
Sage
J
,
Aifantis
I
.
From fly wings to targeted cancer therapies: a centennial for notch signaling
.
Cancer Cell
.
2014
;
25
(
3
):
318
-
334
.
3.
Zhou
Y
,
Han
C
,
Wang
E
, et al
.
Posttranslational regulation of the exon skipping machinery controls aberrant splicing in leukemia
.
Cancer Discov
.
2020
;
10
(
9
):
1388
-
1409
.
4.
Han
C
,
Khodadadi-Jamayran
A
,
Lorch
AH
, et al
.
SF3B1 homeostasis is critical for survival and therapeutic response in T cell leukemia
.
Sci Adv
.
2022
;
8
(
3
):
eabj8357
.
5.
Jin
Q
,
Gutierrez Diaz
B
,
Pieters
T
, et al
.
Oncogenic deubiquitination controls tyrosine kinase signaling and therapy response in acute lymphoblastic leukemia
.
Sci Adv
.
2022
;
8
(
49
):
eabq8437
.
6.
Ntziachristos
P
,
Tsirigos
A
,
Van Vlierberghe
P
, et al
.
Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia
.
Nat Med
.
2012
;
18
(
2
):
298
-
301
.
7.
Ntziachristos
P
,
Tsirigos
A
,
Welstead
GG
, et al
.
Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia
.
Nature
.
2014
;
514
(
7523
):
513
-
517
.
8.
Pui
CH
,
Robison
LL
,
Look
AT
.
Acute lymphoblastic leukaemia
.
Lancet
.
2008
;
371
(
9617
):
1030
-
1043
.
9.
Hunger
SP
,
Mullighan
CG
.
Acute lymphoblastic leukemia in children
.
N Engl J Med
.
2015
;
373
(
16
):
1541
-
1552
.
10.
Sentís
I
,
Gonzalez
S
,
Genescà
E
, et al
.
The evolution of relapse of adult T cell acute lymphoblastic leukemia
.
Genome Biol
.
2020
;
21
(
1
):
284
.
11.
Pocock
R
,
Farah
N
,
Richardson
SE
,
Mansour
MR
.
Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia
.
Br J Haematol
.
2021
;
194
(
1
):
28
-
43
.
12.
Dvinge
H
,
Bradley
RK
.
Widespread intron retention diversifies most cancer transcriptomes
.
Genome Med
.
2015
;
7
(
1
):
45
.
13.
Pellagatti
A
,
Armstrong
RN
,
Steeples
V
, et al
.
Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations
.
Blood
.
2018
;
132
(
12
):
1225
-
1240
.
14.
El Marabti
E
,
Abdel-Wahab
O
.
Therapeutic modulation of RNA splicing in malignant and non-malignant disease
.
Trends Mol Med
.
2021
;
27
(
7
):
643
-
659
.
15.
Anczuków
O
,
Krainer
AR
.
Splicing-factor alterations in cancers
.
RNA
.
2016
;
22
(
9
):
1285
-
1301
.
16.
Je
EM
,
Yoo
NJ
,
Kim
YJ
,
Kim
MS
,
Lee
SH
.
Mutational analysis of splicing machinery genes SF3B1, U2AF1 and SRSF2 in myelodysplasia and other common tumors
.
Int J Cancer
.
2013
;
133
(
1
):
260
-
265
.
17.
Bonnal
SC
,
López-Oreja
I
,
Valcárcel
J
.
Roles and mechanisms of alternative splicing in cancer - implications for care
.
Nat Rev Clin Oncol
.
2020
;
17
(
8
):
457
-
474
.
18.
Brierley
CK
,
Steensma
DP
.
Targeting splicing in the treatment of myelodysplastic syndromes and other myeloid neoplasms
.
Curr Hematol Malig Rep
.
2016
;
11
(
6
):
408
-
415
.
19.
De Kesel
J
,
Fijalkowski
I
,
Taylor
J
,
Ntziachristos
P
.
Splicing dysregulation in human hematologic malignancies: beyond splicing mutations
.
Trends Immunol
.
2022
;
43
(
8
):
674
-
686
.
20.
Fong
JY
,
Pignata
L
,
Goy
PA
, et al
.
Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation
.
Cancer Cell
.
2019
;
36
(
2
):
194
-
209.e9
.
21.
Siqueira
RP
,
Caetano
MMM
,
de Souza
, et al
.
Combined SRPK and AKT pharmacological inhibition is synergistic in T-cell acute lymphoblastic leukemia cells
.
Toxicol In Vitro
.
2020
;
65
:
104777
.
22.
De Keersmaecker
K
,
Atak
ZK
,
Li
N
, et al
.
Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia
.
Nat Genet
.
2013
;
45
(
2
):
186
-
190
.
23.
Dominissini
D
,
Moshitch-Moshkovitz
S
,
Schwartz
S
, et al
.
Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
.
Nature
.
2012
;
485
(
7397
):
201
-
206
.
24.
He
PC
,
Wei
J
,
Dou
X
, et al
.
Exon architecture controls mRNA m(6)A suppression and gene expression
.
Science
.
2023
;
379
(
6633
):
677
-
682
.
25.
Ciesla
M
,
Ngoc
PCT
,
Muthukumar
S
, et al
.
m(6)A-driven SF3B1 translation control steers splicing to direct genome integrity and leukemogenesis
.
Mol Cell
.
2023
;
83
(
7
):
1165
-
1179.e1111
.
26.
Wu
Y
,
Jin
M
,
Fernandez
M
, et al
.
METTL3-mediated m6A modification controls splicing factor abundance and contributes to aggressive CLL
.
Blood Cancer Discov
.
2023
;
4
(
3
):
228
-
245
.
27.
Wang
X
,
Lu
Z
,
Gomez
A
, et al
.
N6-methyladenosine-dependent regulation of messenger RNA stability
.
Nature
.
2014
;
505
(
7481
):
117
-
120
.
28.
Roundtree
IA
,
Evans
ME
,
Pan
T
,
He
C
.
Dynamic RNA modifications in gene expression regulation
.
Cell
.
2017
;
169
(
7
):
1187
-
1200
.
29.
Meyer
KD
,
Patil
DP
,
Zhou
J
, et al
.
5' UTR m(6)A promotes cap-independent translation
.
Cell
.
2015
;
163
(
4
):
999
-
1010
.
30.
Vu
LP
,
Cheng
Y
,
Kharas
MG
.
The biology of m(6)A RNA methylation in normal and malignant hematopoiesis
.
Cancer Discov
.
2019
;
9
(
1
):
25
-
33
.
31.
Garbo
S
,
Zwergel
C
,
Battistelli
C
.
m6A RNA methylation and beyond - the epigenetic machinery and potential treatment options
.
Drug Discov Today
.
2021
;
26
(
11
):
2559
-
2574
.
32.
Jiang
X
,
Liu
B
,
Nie
Z
, et al
.
The role of m6A modification in the biological functions and diseases
.
Signal Transduct Target Ther
.
2021
;
6
(
1
):
74
.
33.
Lan
Q
,
Liu
PY
,
Bell
JL
, et al
.
The emerging roles of RNA m(6)A methylation and demethylation as critical regulators of tumorigenesis, drug sensitivity, and resistance
.
Cancer Res
.
2021
;
81
(
13
):
3431
-
3440
.
34.
Boulias
K
,
Greer
EL
.
Biological roles of adenine methylation in RNA
.
Nat Rev Genet
.
2023
;
24
(
3
):
143
-
160
.
35.
Lee
H
,
Bao
S
,
Qian
Y
, et al
.
Stage-specific requirement for Mettl3-dependent m(6)A mRNA methylation during haematopoietic stem cell differentiation
.
Nat Cell Biol
.
2019
;
21
(
6
):
700
-
709
.
36.
Geula
S
,
Moshitch-Moshkovitz
S
,
Dominissini
D
, et al
.
Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation
.
Science
.
2015
;
347
(
6225
):
1002
-
1006
.
37.
Li
HB
,
Tong
J
,
Zhu
S
, et al
.
m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways
.
Nature
.
2017
;
548
(
7667
):
338
-
342
.
38.
Yankova
E
,
Blackaby
W
,
Albertella
M
, et al
.
Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia
.
Nature
.
2021
;
593
(
7860
):
597
-
601
.
39.
Li
Z
,
Weng
H
,
Su
R
, et al
.
FTO plays an oncogenic role in acute myeloid deukemia as a N(6)-Methyladenosine RNA demethylase
.
Cancer Cell
.
2017
;
31
(
1
):
127
-
141
.
40.
Su
R
,
Dong
L
,
Li
C
, et al
.
R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling
.
Cell
.
2018
;
172
(
1-2
):
90
-
105.e23
.
41.
Huang
Y
,
Su
R
,
Sheng
Y
, et al
.
Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia
.
Cancer Cell
.
2019
;
35
(
4
):
677
-
691.e10
.
42.
Su
R
,
Dong
L
,
Li
Y
, et al
.
Targeting FTO suppresses cancer stem cell maintenance and immune evasion
.
Cancer Cell
.
2020
;
38
(
1
):
79
-
96.e11
.
43.
Feng
P
,
Chen
D
,
Wang
X
, et al
.
Inhibition of the m(6)A reader IGF2BP2 as a strategy against T-cell acute lymphoblastic leukemia
.
Leukemia
.
2022
;
36
(
9
):
2180
-
2188
.
44.
Banker
DE
,
Mayer
SJ
,
Li
HY
,
Willman
CL
,
Appelbaum
FR
,
Zager
RA
.
Cholesterol synthesis and import contribute to protective cholesterol increments in acute myeloid leukemia cells [published correction appears in Blood. 2004;104(10):3020]
.
Blood
.
2004
;
104
(
6
):
1816
-
1824
.
45.
Beesley
AH
,
Firth
MJ
,
Ford
J
, et al
.
Glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia is associated with a proliferative metabolism
.
Br J Cancer
.
2009
;
100
(
12
):
1926
-
1936
.
46.
Kourtis
N
,
Lazaris
C
,
Hockemeyer
K
, et al
.
Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia
.
Nat Med
.
2018
;
24
(
8
):
1157
-
1166
.
47.
Knoechel
B
,
Roderick
JE
,
Williamson
KE
, et al
.
An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia
.
Nat Genet
.
2014
;
46
(
4
):
364
-
370
.
48.
Duan
Y
,
Gong
K
,
Xu
S
,
Zhang
F
,
Meng
X
,
Han
J
.
Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics
.
Signal Transduct Target Ther
.
2022
;
7
(
1
):
265
.
49.
Rashkovan
M
,
Albero
R
,
Gianni
F
, et al
.
Intracellular cholesterol pools regulate oncogenic signaling and epigenetic circuitries in early T-cell precursor acute lymphoblastic leukemia
.
Cancer Discov
.
2022
;
12
(
3
):
856
-
871
.
50.
Tan
SH
,
Tan
TK
,
Yokomori
R
, et al
.
TAL1 hijacks MYCN enhancer that induces MYCN expression and dependence on mevalonate pathway in T-cell acute lymphoblastic leukemia [published correction appears in Leukemia. 2024;38(3):681-682]
.
Leukemia
.
2023
;
37
(
10
):
1969
-
1981
.
51.
Gouw
AM
,
Margulis
K
,
Liu
NS
, et al
.
The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth
.
Cell Metab
.
2019
;
30
(
3
):
556
-
572.e5
.
52.
Deng
X
,
Su
R
,
Weng
H
,
Huang
H
,
Li
Z
,
Chen
J
.
RNA N(6)-methyladenosine modification in cancers: current status and perspectives
.
Cell Res
.
2018
;
28
(
5
):
507
-
517
.
53.
Sutandy
FXR
,
Ebersberger
S
,
Huang
L
, et al
.
In vitro iCLIP-based modeling uncovers how the splicing factor U2AF2 relies on regulation by cofactors
.
Genome Res
.
2018
;
28
(
5
):
699
-
713
.
54.
Venables
JP
,
Koh
CS
,
Froehlich
U
, et al
.
Multiple and specific mRNA processing targets for the major human hnRNP proteins
.
Mol Cell Biol
.
2008
;
28
(
19
):
6033
-
6043
.
55.
Hamilton
BJ
,
Nagy
E
,
Malter
JS
,
Arrick
BA
,
Rigby
WF
.
Association of heterogeneous nuclear ribonucleoprotein A1 and C proteins with reiterated AUUUA sequences
.
J Biol Chem
.
1993
;
268
(
12
):
8881
-
8887
.
56.
Nasrin
F
,
Rahman
MA
,
Masuda
A
, et al
.
HnRNP C, YB-1 and hnRNP L coordinately enhance skipping of human MUSK exon 10 to generate a Wnt-insensitive MuSK isoform
.
Sci Rep
.
2014
;
4
:
6841
.
57.
Schultz
AS
,
Preussner
M
,
Bunse
M
,
Karni
R
,
Heyd
F
.
Activation-dependent TRAF3 exon 8 alternative splicing is controlled by CELF2 and hnRNP C binding to an upstream intronic element
.
Mol Cell Biol
.
2017
;
37
(
7
):
e00488-16
.
58.
Zhou
D
,
Couture
S
,
Scott
MS
,
Abou Elela
S
.
RBFOX2 alters splicing outcome in distinct binding modes with multiple protein partners
.
Nucleic Acids Res
.
2021
;
49
(
14
):
8370
-
8383
.
59.
Shetty
S
.
Regulation of urokinase receptor mRNA stability by hnRNP C in lung epithelial cells
.
Mol Cell Biochem
.
2005
;
272
(
1-2
):
107
-
118
.
60.
Kim
JH
,
Paek
KY
,
Choi
K
, et al
.
Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner
.
Mol Cell Biol
.
2003
;
23
(
2
):
708
-
720
.
61.
Mo
L
,
Meng
L
,
Huang
Z
,
Yi
L
,
Yang
N
,
Li
G
.
An analysis of the role of HnRNP C dysregulation in cancers
.
Biomark Res
.
2022
;
10
(
1
):
19
.
62.
Liu
N
,
Dai
Q
,
Zheng
G
,
He
C
,
Parisien
M
,
Pan
T
.
N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions
.
Nature
.
2015
;
518
(
7540
):
560
-
564
.
63.
Wang
LC
,
Chen
SH
,
Shen
XL
, et al
.
M6A RNA methylation regulator HNRNPC contributes to tumorigenesis and predicts prognosis in glioblastoma multiforme
.
Front Oncol
.
2020
;
10
:
536875
.
64.
Haferlach
T
,
Kohlmann
A
,
Wieczorek
L
, et al
.
Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group
.
J Clin Oncol
.
2010
;
28
(
15
):
2529
-
2537
.
65.
Kohlmann
A
,
Kipps
TJ
,
Rassenti
LZ
, et al
.
An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase
.
Br J Haematol
.
2008
;
142
(
5
):
802
-
807
.
66.
Bampton
A
,
Gittings
LM
,
Fratta
P
,
Lashley
T
,
Gatt
A
.
The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis
.
Acta Neuropathol
.
2020
;
140
(
5
):
599
-
623
.
67.
Guirguis
AA
,
Ofir-Rosenfeld
Y
,
Knezevic
K
, et al
.
Inhibition of METTL3 results in a cell-intrinsic interferon response that enhances antitumor immunity
.
Cancer Discov
.
2023
;
13
(
10
):
2228
-
2247
.
68.
Weng
H
,
Huang
H
,
Wu
H
, et al
.
METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification
.
Cell Stem Cell
.
2018
;
22
(
2
):
191
-
205.e9
.
69.
Lorentzian
AC
,
Rever
J
,
Ergin
EK
, et al
.
Targetable lesions and proteomes predict therapy sensitivity through disease evolution in pediatric acute lymphoblastic leukemia
.
Nat Commun
.
2023
;
14
(
1
):
7161
.
70.
Spiegel
RJ
,
Blum
RH
,
Levin
M
, et al
.
Phase I clinical trial of 9,10-anthracene dicarboxaldehyde (bisantrene) administered in a five-day schedule
.
Cancer Res
.
1982
;
42
(
1
):
354
-
358
.
71.
de Forni
M
,
Chabot
GG
,
Armand
JP
, et al
.
Phase I and pharmacokinetic study of brequinar (DUP 785; NSC 368390) in cancer patients
.
Eur J Cancer
.
1993
;
29A
(
7
):
983
-
988
.
72.
Selberg
S
,
Seli
N
,
Kankuri
E
,
Karelson
M
.
Rational design of novel anticancer small-molecule RNA m6A demethylase ALKBH5 inhibitors
.
ACS Omega
.
2021
;
6
(
20
):
13310
-
13320
.
73.
Dördelmann
M
,
Reiter
A
,
Borkhardt
A
, et al
.
Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia
.
Blood
.
1999
;
94
(
4
):
1209
-
1217
.
74.
Schmidt
S
,
Irving
JA
,
Minto
L
, et al
.
Glucocorticoid resistance in two key models of acute lymphoblastic leukemia occurs at the level of the glucocorticoid receptor
.
Faseb j
.
2006
;
20
(
14
):
2600
-
2602
.
75.
Zarnack
K
,
König
J
,
Tajnik
M
, et al
.
Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements
.
Cell
.
2013
;
152
(
3
):
453
-
466
.
76.
Wu
Y
,
Zhao
W
,
Liu
Y
, et al
.
Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response
.
EMBO J
.
2018
;
37
(
23
):
e99017
.
77.
Aviner
R
,
Hofmann
S
,
Elman
T
, et al
.
Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis
.
Nucleic Acids Res
.
2017
;
45
(
10
):
5945
-
5957
.
78.
Liu
W
,
Chakraborty
B
,
Safi
R
,
Kazmin
D
,
Chang
CY
,
McDonnell
DP
.
Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer
.
Nat Commun
.
2021
;
12
(
1
):
5103
.
79.
Zhu
J
,
Blenis
J
,
Yuan
J
.
Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
18
):
6584
-
6589
.
80.
Silveira
AB
,
Laranjeira
AB
,
Rodrigues
GO
, et al
.
PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia
.
Oncotarget
.
2015
;
6
(
15
):
13105
-
13118
.
81.
Wei
J
,
Liu
F
,
Lu
Z
, et al
.
Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm
.
Mol Cell
.
2018
;
71
(
6
):
973
-
985.e5
.
82.
Relier
S
,
Ripoll
J
,
Guillorit
H
, et al
.
FTO-mediated cytoplasmic m(6)A(m) demethylation adjusts stem-like properties in colorectal cancer cell
.
Nat Commun
.
2021
;
12
(
1
):
1716
.
83.
Mauer
J
,
Sindelar
M
,
Despic
V
, et al
.
FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis
.
Nat Chem Biol
.
2019
;
15
(
4
):
340
-
347
.
84.
Wei
J
,
Yu
X
,
Yang
L
, et al
.
FTO mediates LINE1 m(6)A demethylation and chromatin regulation in mESCs and mouse development
.
Science
.
2022
;
376
(
6596
):
968
-
973
.
85.
Yu
Q
,
Liu
S
,
Yu
L
, et al
.
RNA demethylation increases the yield and biomass of rice and potato plants in field trials
.
Nat Biotechnol
.
2021
;
39
(
12
):
1581
-
1588
.
You do not currently have access to this content.
Sign in via your Institution