Table 3

Summary of predictive variables in the multivariate models

Early predictive variablesLate rates dichotomous at median no. of events/y
Late rates dichotomous at 1 event/y
POR95% CIR2POR95% CIR2
For outcome: late pain 
    Early pain, nondactylitis .002 1.93 1.26-2.95 0.060 — — —  
    Early ACS — — —  .009 1.57 1.12-2.21 0.053 
    For outcome: late ACS 
    Early ACS <.001 2.23 1.52-3.29 0.149 <.001 2.51 1.67-3.86 0.236 
    For outcome: late pain and ACS 
    Early ACS .001 1.92 1.36-2.70 0.152 <.001 1.93 1.42-2.62 0.123 
Early predictive variablesLate rates dichotomous at median no. of events/y
Late rates dichotomous at 1 event/y
POR95% CIR2POR95% CIR2
For outcome: late pain 
    Early pain, nondactylitis .002 1.93 1.26-2.95 0.060 — — —  
    Early ACS — — —  .009 1.57 1.12-2.21 0.053 
    For outcome: late ACS 
    Early ACS <.001 2.23 1.52-3.29 0.149 <.001 2.51 1.67-3.86 0.236 
    For outcome: late pain and ACS 
    Early ACS .001 1.92 1.36-2.70 0.152 <.001 1.93 1.42-2.62 0.123 

ORs are calculated by binary logistic regression analysis, which adjusts for sex, genotype, early nondactylitis pain, early dactylitis, and early ACS episodes as appropriate. ORs correspond to a single unit increase in the predictive variable (an episode of ACS or pain, where appropriate). Nagelkerke R2 values are reported as coefficients of determination and indicate the proportion of variability in the outcomes explained by the models.

— indicates not predictive.